GPS radio occultation Sean Healy DA lecture, 28th April, 2008.

Slides:



Advertisements
Similar presentations
Sean Healy DA lecture, 11th May, 2010
Advertisements

Introduction to GPS radio occultation
ASSIMILATION of Limb measurements at ECMWF: GPS radio occultation
RADCOR for US Sondes Dr. Bradley Ballish NCEP/NCO/PMB 10 March 2011.
© The Aerospace Corporation 2014 Observation Impact on WRF Model Forecast Accuracy over Southwest Asia Michael D. McAtee Environmental Satellite Systems.
ECMWF CO 2 Data Assimilation at ECMWF Richard Engelen European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Many thanks to Phil Watts,
Ben Kravitz November 12, 2009 Limb Scanning and Occultation.
Wave-critical layer interactions observed using GPS data Bill Randel, NCAR.
ECMWF – 1© European Centre for Medium-Range Weather Forecasts Developments in the use of AMSU-A, ATMS and HIRS data at ECMWF Heather Lawrence, first-year.
RO Winds, Reanalysis, PPE Stephen Leroy 1, Chi Ao 2, Olga Verkhoglyadova 2 CLARREO SDT Meeting, April 16-18, 2013 NASA Langley Research Center 1 Harvard.
Forecast impact experiments with CHAMP RO measurements Sean Healy Acknowledgements Jean-Noël Thépaut, Sami Saarinen, Niels Bormann, Lars Isaksen, Adrian.
GPS / RO for atmospheric studies Dept. of Physics and Astronomy GPS / RO for atmospheric studies Panagiotis Vergados Dept. of Physics and Astronomy.
GCOS Meeting Seattle, May 06 Using GPS for Climate Monitoring Christian Rocken UCAR/COSMIC Program Office.
Radio Occultation From GPS/MET to COSMIC.
Rosetta_CD\PR\what_is_RS.ppt, :39AM, 1 Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 The retrieval S.Tellmann,
GRAS SAF Workshop, 12 June 2003 Assimilation of satellite data at ECMWF Prospects for use of radio-occultation measurements Jean-Noël Thépaut ECMWF thanks.
New Satellite Capabilities and Existing Opportunities Bill Kuo 1 and Chris Velden 2 1 National Center for Atmospheric Research 2 University of Wisconsin.
Use of GPS RO in Operations at NCEP
Using GPS data to study the tropical tropopause Bill Randel National Center for Atmospheric Research Boulder, Colorado “You can observe a lot by just watching”
2nd GRAS SAF User Workshop, June 2003, Helsingør, Denmark. 1Introduction to data assimilation An introduction to data assimilation Xiang-Yu Huang.
CGMS-40, November 2012, Lugano, Switzerland Coordination Group for Meteorological Satellites - CGMS IROWG - Overview of and Plans for the Newest CGMS Working.
Simulation Studies on the Analysis of Radio Occultation Data Andrea K. Steiner, Ulrich Foelsche, Andreas Gobiet, and Gottfried Kirchengast Institute for.
Different options for the assimilation of GPS Radio Occultation data within GSI Lidia Cucurull NOAA/NWS/NCEP/EMC GSI workshop, Boulder CO, 28 June 2011.
June, 2003EUMETSAT GRAS SAF 2nd User Workshop. 2 The EPS/METOP Satellite.
The vertical resolution of the IASI assimilation system – how sensitive is the analysis to the misspecification of background errors? Fiona Hilton and.
Status of the assimilation of GPS RO observations: the COSMIC Mission L. Cucurull JCSDA/UCAR J.C. Derber, R. Treadon, and R.J. Purser.
COSMIC GPS Radio Occultation Temperature Profiles in Clouds L. LIN AND X. ZOU The Florida State University, Tallahassee, Florida R. ANTHES University Corporation.
Linear and nonlinear representations of wave fields and their application to processing of radio occultations M. E. Gorbunov, A. V. Shmakov Obukhov Institute.
ROSA – ROSSA Validation results R. Notarpietro, G. Perona, M. Cucca
Recent developments for a forward operator for GPS RO Lidia Cucurull NOAA GPS RO Program Scientist NOAA/NWS/NCEP/EMC NCU, Taiwan, 16 August
Slide 1 Second GPS/RO Users Workshop, August , The EUMETSAT Polar System GRAS SAF and Data Products Martin B. Sorensen GRAS SAF Project Atmosphere.
Vertical Structure of the Atmosphere within Clouds Revealed by COSMIC Data Xiaolei Zou, Li Lin Florida State University Rick Anthes, Bill Kuo, UCAR Fourth.
Use of GPS Radio Occultation Data for Climate Monitoring Y.-H. Kuo, C. Rocken, and R. A. Anthes University Corporation for Atmospheric Research.
Application of COSMIC refractivity in Improving Tropical Analyses and Forecasts H. Liu, J. Anderson, B. Kuo, C. Snyder, and Y. Chen NCAR IMAGe/COSMIC/MMM.
WP 3: DATA ASSIMILATION SMHI/FMI Status report 3rd CARPE DIEM meeting, University of Essex, Colchester, 9-10 January 2003 Structure SMHI/FMI plans for.
2 nd GRAS-SAF USER WORKSHOP Assimilation of GPS radio occultation measurements at DAO (soon GMAO) P. Poli 1,2 and J. Joiner 3 Data Assimilation Office.
AGU Fall MeetingDec 11-15, 2006San Francisco, CA Estimates of the precision of GPS radio occultations from the FORMOSAT-3/COSMIC mission Bill Schreiner,
ECMWF reanalysis using GPS RO data Sean Healy Shinya Kobayashi, Saki Uppala, Mark Ringer and Mike Rennie.
Preliminary results from assimilation of GPS radio occultation data in WRF using an ensemble filter H. Liu, J. Anderson, B. Kuo, C. Snyder, A. Caya IMAGe.
Improved Radio Occultation Observations for a COSMIC Follow-on Mission C. Rocken, S. Sokolovskiy, B. Schreiner UCAR / COSMIC D. Ector NOAA.
COSMIC Update and Highlights 8 November
Radio Occultation. Temperature [C] at 100 mb (16km) Evolving COSMIC Constellation.
Sean Healy Presented by Erik Andersson
Data Assimilation Retrieval of Electron Density Profiles from Radio Occultation Measurements Xin’an Yue, W. S. Schreiner, Jason Lin, C. Rocken, Y-H. Kuo.
Towards a Robust and Model- Independent GNSS RO Climate Data Record Chi O. Ao and Anthony J. Mannucci 12/2/15CLARREO SDT Meeting, Hampton, VA1 © 2015 California.
1 3D-Var assimilation of CHAMP measurements at the Met Office Sean Healy, Adrian Jupp and Christian Marquardt.
© Crown copyright Met Office Recent progress in the application of GPSRO data at the Met Office Michael Rennie, OPAC 2010 Workshop, 07/09/10.
GPS Radio-Occultation data (COSMIC mission) Lidia Cucurull NOAA Joint Center for Satellite Data Assimilation.
Assimilation experiments with CHAMP GPS radio occultation measurements By S. B. HEALY and J.-N. THÉPAUT European Centre for Medium-Range Weather Forecasts,
Workshop on Soundings from High Spectral Resolution Infrared Observations May 6-8, 2003 University of Wisconsin-Madison.
CGMS-43 EUM-WP-12 Presentation1 STATUS OF EUMETSAT STUDY ON RADIO OCCULTATION SATURATION WITH REALISTIC ORBITS.
© Crown copyright Met Office Assimilating infra-red sounder data over land John Eyre for Ed Pavelin Met Office, UK Acknowledgements: Brett Candy DAOS-WG,
Observational Error Estimation of FORMOSAT-3/COSMIC GPS Radio Occultation Data SHU-YA CHEN AND CHING-YUANG HUANG Department of Atmospheric Sciences, National.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
GPS radio occultation: Principles and NWP use
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
TIMN seminar GNSS Radio Occultation Inversion Methods Thomas Sievert September 12th, 2017 Karlskrona, Sweden.
Radio occultation (RO) and its use in NWP
Data Assimilation Training
WG Climate, March 6 – 9, 2016 Paris, France
Study of the sporadic E (Es) layer by GPS radio occultation (RO)
Hui Liu, Jeff Anderson, and Bill Kuo
The ECMWF weak constraint 4D-Var formulation
FSOI adapted for used with 4D-EnVar
Assimilation of Global Positioning System Radio Occultation Observations Using an Ensemble Filter in Atmospheric Prediction Models Hui Liu, Jefferey Anderson,
New DA techniques and applications for stratospheric data sets
NOAA/NESDIS/Center for Satellite Applications and Research
Data Assimilation Initiative, NCAR
Effects and magnitudes of some specific errors
Challenges of Radio Occultation Data Processing
Presentation transcript:

GPS radio occultation Sean Healy DA lecture, 28th April, 2008

Aim of lecture Introduce the GPS radio occultation measurement technique. Explain the basic physics of the measurement. Try to be honest about the strengths and weaknesses of the technique. Why do we need GPS radio occultation measurements, given that we have millions of satellite measurements? Summarise first assimilation results at ECMWF. Point you to web sites that contain useful papers and where you can get GPSRO assimilation software (1D-Var minimisation code, observation operators etc).

1) Limb geometry. 2) GPS radio occultation (RO) measurements. 3) “Classical RO retrieval”. 4) Why are we interested in GPS RO (weighting functions, vertical resolution, information content). 5) Early 4D-Var assimilation of GPS RO measurements. 6) Planetary boundary layer information from GPS RO. 7) Useful web sites. 8) Summary and conclusions. Outline

Limb geometry Satellite h Tangent height We are looking at a slice through the atmosphere with a cold space background. A large proportion signal (radiance or bending) arises near the tangent height, leading to narrow vertical weighting functions, but they tend to be quite broad in the horizontal.

Radio Occultation Background Radio occultation (RO) measurements have been used to study planetary atmospheres, such as Mars and Venus, since the 1960’s. Its an active technique, that is based on very simple physics - Snell’s Law of refraction. We simply look at how the paths of radio signals are bent by refractive index gradients in the atmosphere. Much easier than modelling radiative transfer! The use of RO measurements in the Earth’s atmosphere was originally proposed in 1965, but required the advent of the GPS constellation of satellites to provide a suitable source of radio signals. In 1996 the proof of concept “GPS/MET” experiment demonstrated useful temperature information could be derived from the GPS RO measurements.

GPS RO: Basic idea The 24 GPS satellites are primarily a tool for positioning and navigation These satellites emit radio signals at L1= GHz and L2=1.2276GHz (~20 cm wavelength). The path of a GPS signal will be bent by refractive index gradients in the ionosphere and neutral atmosphere. GPS RO is based on analysing the bending caused by the neutral atmosphere along ray paths between a GPS satellite and a receiver placed on a low-earth-orbiting (LEO) satellite. IE, it’s an active satellite to satellite measurement! (The ionospheric signal can be removed by taking a linear combination of the L1 and L2 measurements. We’ll ignore the ionosphere in this lecture, but note GPSRO measurements can also provide useful ionospheric electron density profiles.)

GPS RO geometry GPS transmitter LEO receiver “eg, CHAMP”  Setting occultation: as the LEO moves behind the earth we obtain a profile of bending angles, , as a function of impact parameter,. The impact parameter is the distance of closest approach for the straight line path. Its directly analogous to angular momentum of a particle. 20,200km 800km Tangent point The motion of LEO results in sounding progressively lower regions of the atmosphere.

GPS RO  Good vertical resolution. Around 70% of the bending occurs over a ~450km section of ray-path, centred on the tangent point (point closest to surface) – it has a broad horizontal weighting function!  All weather capability: not affected by cloud or rain.  The bending is ~1-2 degree at the surface, falling exponentially with height. The scale-height of the decay is approximately the density scale-height.  A profile of bending angles from ~60km tangent height to the surface takes about 2 minutes. Tangent point drifts in the horizontal by ~150 km during the measurement.

The “Classical” retrieval (Or how the planetary scientists invert RO data) GPS RECEIVERS DO NOT MEASURE BENDING ANGLE DIRECTLY! In fact, the bending angles, , and impact parameter values,, are derived from the time derivative of the measured phase delay assuming local spherical symmetry. This is done by assuming that the impact parameter value is constant along the ray-path: Given bending angle, , as a function of impact parameter we can estimate the refractive index profile, n, in the region of the tangent point. where  is the angle between the ray-path and the local radius vector, r is the radius value and n is the refractive index.  r ray-path

“Classical” retrieval (2) If the impact parameter is constant, the bending angle can be written in terms of the radial gradient of refractive index, This integral can be inverted with an Abel transform: Convenient variable for integration So we can derive the refractive index as a function of radius from the profile of bending angles as a function of impact parameters. (Note the upper limit. Extrapolation required a-priori information used.)

“Classical” retrieval (3) The refractive index can be written as: “dry term” “wet term” Neglecting the wet term and using the ideal gas law (P=  RT ), the refractivity, N, is linearly proportional to density. Use the hydrostatic equation to obtain the pressure profile. a priori ( c 1 = 77.6 and c 2 = 3.73E5 are known constants) refractivity

“Classical” retrieval (4) The temperature profile can then be derived with the ideal gas law: GPSMET experiment (1996): Groups from JPL and UCAR demonstrated that the retrievals agreed with co-located analyses and radiosondes to within 1K between ~5-25km. EG, See Rocken et al, 1997, JGR, 102, D25,

GPS/MET Temperature Sounding (Kursinski et al, 1996, Science, 271, , Fig2a) GPS/MET - thick solid. Radiosonde – thin solid. Dotted ECMWF anal. (Location 69N, 83W UT, 5 th May, 1995)

Post GPS/MET The “proof of concept” GPS/MET mission in 1996 was a major success. This led to a number of missions of opportunity, proposals for a constellation of LEO satellites and first dedicated operational instruments. Current status: –Missions of opportunity: CHAMP and GRACE-A currently provide a combined total of around 300 occultations per day. –The COSMIC constellation of 6 LEO satellites was launched last year. Currently providing ~2100 occultations per day. –The GRAS instrument on METOP provides ~600 measurements. GRAS was declared operational 17 th April, 2008.

GPSRO Data Coverage 20 th April, 2008 (12Z)

But why are we interested in GPS RO for NWP? Even with COSMIC, the GPSRO data numbers are quite small. There is already a massive number of satellite data assimilated into NWP models - of order millions of satellite radiances with the latest high-resolution IR sounders. 1) GPS RO can be assimilated without bias correction*. They are good for highlighting model errors/biases. Most other satellite observations require bias correction to the model (lecture by Dick Dee). Climate applications. 2) GPS RO (limb sounders in general) have sharper weighting functions in the vertical and therefore have good vertical resolution properties. The GPSRO measurements can “see” vertical structures that are in the “null space” of the satellite radiances. * The observed refractivity values are biased low near the surface. See Ao et al, JGR, 2003, D18, 4577, doi: /2002JD

Limitations of classical retrieval The classical GPS retrieval is good for developing a physical understanding of the measurement technique, but it is not recommended as a practical retrieval method for either NWP or climate applications because: 1) Above ~35 km, the temperature retrievals are very sensitive to noise (e.g., residual ionospheric signal) and the introduction of a priori information. Information content is low above 35km – signal to noise falls exponentially with height! 2) We also need a-priori information to derive temperature and humidity information from the measurements near the surface (The “water-vapour” ambiguity N(T,Q).) Better to use 1D-Var retrievals, where the observation operator, H(x), simulates refractivity or bending angle from the model state. The observation operators can also be used in a 4D/3D Var assimilation system.

1D-Var retrieval The 1D-Var retrieval minimises the cost function: The observation operator - simulating bending angles or refractivity from the forecast state. The 1D-Var approach provides a framework for testing observation operators that we might use in 3D/4D-Var assimilation. We can also investigate various information content measures.

1D bending angle weighting function (Normalised with the peak value) Very sharp weighting function in the vertical – we can resolve structures that nadir sounders cannot! (See also Eyre, ECMWF Tech Memo. 199.) Weighting function peaks at the pressure levels above and below the ray tangent point. Bending related to vertical gradient of refractivity: Increase the T on the lower level – reduce the N gradient – less bending! Increase the T on the upper level – increase N gradient more bending!

Useful 1D-Var diagnostics 1D-Var provides an estimate of the solution error covariance matrix It also gives vertical resolution diagnostics – the averaging kernel.

1D-Var information content (Collard+Healy, 2003) QJRMS, 2003, v129, RO provides good temperature information between hPa. IASI retrieval performed with 1000 channels, RO has 120 refractivity values. (Refractivity errors are vertically correlated because of the Abel transform). RO humidity error estimates are over- optimistic near the surface. The observed refractivity values are known to be biased near the surface – as noted earlier. RO provides very little humidity information above 400hPa. The “wet” refractivity is small compared to the assumed observation error.

Vertical resolution (1D-Var averaging kernels – how well a retrieval can reproduce a spike)

Assimilation of GPSRO at ECMWF We currently assimilate GPS RO bending angle profiles by evaluating the 1D bending angle integral. So we treat the GPS RO measurement as though it is a profile measurement. We have 2D bending angle operators built into the assimilation code as well, but these are not yet used in operations.

Impact on ECMWF operational analyses We would expect improvements in the stratospheric temperatures. The fit to radiosonde temperatures is improved (eg, 100 hPa, SH). GPSRO used in operations since 12 th December, 2007.

Mean analysis/increments over Antarctica for Feb Mean analysisMean temperature increment Black = GPSRO included Red = No GPSRO measurements assimilated

Deriving planetary boundary layer information from GPSRO measurement Some recent papers have suggested that we should be able to derive information on the height of the planetary boundary layer from the GPSRO bending angle and refractivity profiles. –Sokolovskiy et al, 2007, GRL, 34,L18802,doi /2007GL –VonEngeln et al, 2005, GRL, 32, L06815,doi /2004GL The central idea is that you see big changes in the bending angle and refractivity profile gradient across the top of the PBL.

Sokolovskiy et al, (2007) It is a very interesting idea, which needs to be investigated further. We need to think about the 2D errors. Remember GPSRO averages over ~450 km in the horizontal!

Useful web-sites The COSMIC homepage This contains latest information on the status of COSMIC and an extensive list of papers with some links to.pdfs of the papers. The GRAS-SAF homepage –You can find lists of GRAS-SAF publications –Links to GPS RO monitoring pages (Data quality, data flow of COSMIC, GRACE-A, CHAMP and GRAS). –In addition, you can register and download for the GRAS-SAF’s Radio Occultation Processing Package (ROPP). This F90 software package containing pre-processing software modules,1D-Var minimization code, bending angle and refractivity observation operators and their tangent- linears and adjoints.

Summary GPS RO is a satellite-to-satellite limb measurement. Outlined the basic physics of the GPS RO technique and the classical retrieval. Measurements do not require bias correction. This may be important for climate applications. The observation operators are quite simple. Very good vertical resolution, but poor horizontal resolution (~450 km average). Also, be wary of classical temperature retrievals above 35 km. They mainly contain a-priori information. Information content studies suggest GPS RO should provide good temperature information in the upper troposphere and lower/mid stratosphere. First impact studies and results in operations support this. Nice results over Antarctica, where a known model/assimilation problem has been corrected. PBL work is an interesting new application, but 2D aspects need to be considered carefully.

PS, GRAS SAF Workshop on applications of GPSRO observations ECMWF will host a GRAS SAF workshop on the Applications of GPSRO measurements in June 16-18, If you’re interested in the workshop or have any questions about GPSRO please contact me