Behavior of the total electron content over three stations of the LISN zone M. Mosert 1, M. Gende 2,C. Brunini 2, R.Ezquer 3,4 1 Instituto de Ciencias.

Slides:



Advertisements
Similar presentations
Modelling complexity in the upper atmosphere using GPS data Chris Budd, Cathryn Mitchell, Paul Spencer Bath Institute for Complex Systems, University of.
Advertisements

Manifestation of strong geomagnetic storms in the ionosphere above Europe D. Buresova(1), J. Lastovicka(1), and G. DeFranceschi(2) (1)Institute of Atmospheric.
Using FORMOSAT-3/COSMIC GPS data to improve the La Plata Ionospheric Model J. Federico Conte, Francisco Azpilicueta, Claudio Brunini, Diego Janches GESA,
HF management communication system and link optimization Bruno Zolesi. Istituto Nazionale di Geofisica e Vulcanologia.
B. Nava, S.M. Radicella, R. Leitinger and P.Coïsson The Abdus Salam ICTP, Trieste, Italy IGAM, Graz, Austria XXVIII General Assembly of International Union.
URSIGA, New Delhi, Oct 2005 Coordinated Observations of Ionospheric Scintillations, Density Profiles and Total Electron Content on a Common Magnetic.
M. Gende 1,2, C. Brunini 1,2, F. Azpilicueta 1,2 Universidad Nacional de La Plata, Argentina 1 CONICET, Argentina 2 La Plata Ionospheric Model as a tool.
LISN Data Products & Data Access J. C. Espinoza, C. De La Jara, J. L. Chau Radio Observatorio de Jicamarca, Instituto Geofísico del Perú, Lima 2 nd LISN.
1 Effects of solar activity, co-rotating interaction regions, and climate change on thermospheric density during the solar cycle 23/24 minimum Stan Solomon.
Simultaneous profile measurements of BrO, OClO and NO 2 in the polar vortex Chris Sioris and Kelly Chance Smithsonian Astrophysical Observatory.
Ionosphere Climate Studied by F3 / COSMIC Constellation C. H. Liu Academia Sinica In Collaboration with Tulasi Ram, C.H. Lin and S.Y. Su.
Preeti Bhaneja Terry Bullett November 8, 2011
I. U. Observatorio del Ebro, Universitat Ramon Llull Center for Atmospheric Research, University of Massachusets Lowell IRI/COST 296 WORKSHOP; July.
“EQUATORIAL TEC OVER SOUTH AMERICAN SECTOR WITH DIFFERENT MAGNETIC DECLINATION ANGLES” P. A. B. Nogueira *1, M. A. Abdu 1, J. R. Souza 1, I. S. Batista.
"Research activities and technological development for upper atmosphere studies as a contribution to communications and satellite navigation” Universidad.
1 September Buenos Aires, Argentina. IAG Scientific Assembly: Geodesy For Planet Earth. 1 M. Gende 1, C. Brunini 1, C. Valladares 2 Universidad Nacional.
Storm-time total electron content and its response to penetration electric fields over South America P. M. de Siqueira, E. R. de Paula, M. T. A. H. Muella,
Status of GNSS ionospheric Study in Korea
Solar Cycle Variations of Topside Electron Density and Temperature: Altitudinal, Latitudinal, and Seasonal Differences. D. Bilitza (1), P. Richards (2),
LISN Model/Data Inversion to Determine the Drivers of the Low-Latitude Ionosphere (Comparisons with JRO ISR Drift Measurements) Vince Eccles (Modeling)
Space Weather Workshop, Boulder, CO, April 2013 No. 1 Ionospheric plasma irregularities at high latitudes as observed by CHAMP Hermann Lühr and.
Abstract Since the ionosphere is the interface between the Earth and space environments and impacts radio, television and satellite communication, it is.
SCHOOL OF PHYSICS Space Weather in the Equatorial Ionosphere Robert Stening School of Physics, University of New South Wales Acknowledge help from Dr J.
CANONICAL AND MODOKI ENSO AND INFLUENCES ON LA PLATA BASIN EXTREME EVENTS OF PRECIPITATION Renata G. Tedeschi 1 Alice M. Grimm.
Ionosphere Response to the M9 Tohoku Earthquake Revealed by Satellite Observations on South American Stations. Preliminary results. Hernan Esquivel1, Blas.
Sandro M. Radicella Head, Aeronomy and radiopropagation Laboratory Ionospheric Research at the Abdus Salam ICTP Aeronomy and Radiopropagation Laboratory.
Determining the Sharp, Longitudinal Gradients in Equatorial ExB Drift Velocities Associated with the 4-cell, Non-migrating Structures David Anderson and.
Nighttime 4-peak Longitudinal Structure of Ionospheric Plasma Density at Mid-Low latitudes During High and Extreme.
The ozone vertical structure determining from ground-based Fourier spectrometer solar IR radiation measurements Ya.A. Virolainen, Yu.M. Timofeyev, D.V.
INTERANUAL VARIABILITY OF PRECIPITATION IN LA PLATA BASIN AND EL NINO (CANONICAL AND MODOKI) - BEHAVIOR OF HADLEY AND GFDL MODELS Renata G. Tedeschi 1.
Joint International GRACE Science Team Meeting and DFG SPP 1257 Symposium, Oct. 2007, GFZ Potsdam Folie 1 Retrieval of electron density profiles.
ROSA – ROSSA Validation results R. Notarpietro, G. Perona, M. Cucca
VTEC prediction using a recursive artificial neural networks approach in Brazil: initial results Engineer School - University of São Paulo Wagner Carrupt.
Ceilometer Observation of Seasonal and Diurnal Variation in Cloud Cover Fraction, Cloud Base Height, and Visual Range in the Eastern Amazon Region Matthew.
VARIABILITY OF TOTAL ELECTRON CONTENT AT EUROPEAN LATITUDES A. Krankowski(1), L. W. Baran(1), W. Kosek (2), I. I. Shagimuratov(3), M. Kalarus (2) (1) Institute.
M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products.
Global E-region Densities Derived from Radio Occultation Measurements M. J. Nicolls 1, F. S Rodrigues 2, and G. S. Bust 2 1. SRI International, Menlo Park,
Comparison of the electron density profiles measured with the Incoherent Scatter Radar, Digisonde DPS-4 and Chirp-Ionosonde Ratovsky K.G., Shpynev* B.G.,
Michael Pezzopane et al. Assimilation of autoscaled data and regional and local ionospheric models as input source for a real-time 3-D IRI modeling: additional.
Ionospheric irregularities observed with a GPS network in Japan TOHRU ARAMAKI[1],Yuichi Otsuka[1],Tadahiko Ogawa[1],Akinori Saito[2] and Takuya Tsugawa[2]
TWELFTH EUROPEAN SPACE WEATHER WEEK (ESWW12) OOSTENDE, BELGIUM, NOVEMBER, 2015 Alessandro Settimi (1)*, Michael Pezzopane (1), Marco Pietrella.
Transient response of the ionosphere to X-ray solar flares Jaroslav Chum (1), Jaroslav Urbář (1), Jann-Yenq Liu (2) (1) Institute of Atmospheric Physics,
LISN Data Products & Data Access
Formosat3/COSMIC Workshop, Taipei, Oct. 1-3, 2008 The Ionosphere as Signal and Noise in Radio Occultation Christian Rocken, Sergey Sokolovskiy, Bill Schreiner,
Abstract/INTRODUCTION Electron density (ED) data returned by the ARIEL 3 and ARIEL 4 Satellites have been separated into seasonal, diurnal, longitudinal.
Electron density profile retrieval from RO data Xin’an Yue, Bill Schreiner  Abel inversion error of Ne  Data Assimilation test.
0 7th ESWW, Bruges, Ionospheric Scintillations Propagation Model Y. Béniguel, J-P Adam IEEA, Courbevoie, France.
COSMIC Ionospheric measurements Jiuhou Lei NCAR ASP/HAO Research review, Boulder, March 8, 2007.
Teleconnection Patterns and Seasonal Climate Prediction over South America The Final Chapter??? Tércio Ambrizzi and Rosmeri P. da Rocha University of São.
Climatology of the Río de la Plata Basin: short and long term variability Mario Bidegain Facultad de Ciencias Universidad de la Republica Uruguay Workshop.
Effects of January 2010 stratospheric sudden warming in the low-latitude ionosphere L. Goncharenko, A. Coster, W. Rideout, MIT Haystack Observatory, USA.
Michael Pezzopane et al.SIF 2015 – 24 September 2015 Importance of a real-time monitoring of the Earth's ionosphere M. Pezzopane, J.A. Baskaradas, C. Bianchi,
NATIONAL INSTITUTE FOR SPACE RESEARCH – INPE/MCT SOUTHERN REGIONAL SPACE RESEARCH CENTER – CRS/CCR/INPE – MCT FEDERAL UNIVERSITY OF SANTA MARIA - UFSM.
Dario Sabbagh (1),(2), Carlo Scotto (2), Vittorio Sgrigna (1) (1) Università degli Studi Roma Tre, Dipartimento di Matematica e Fisica, Via della Vasca.
THE SAINT PATRICK GEOMAGNETIC STORM MONITORED BY THE ERICA PROJECT Gabriella Povero* 1, Prayitno Abadi 2, Lucilla Alfonsi 3, Domenico Di Mauro 3, Fabio.
pre-reversal enhancement of the evening vertical plasma drifts
LISN observations over the American continent
1st VarSITI General Symposium 6-11 June 2016 Albena, Bulgaria
Welcome to Equatorial-PRIMO
HF radio sounding the horizontally inhomogeneous ionosphere
Analysis of tropospheric ozone long-term lidar and surface measurements at the JPL-Table Mountain Facility site, California Maria J. Granados-Muñoz and.
Seasonal dependence of the nighttime traveling ionospheric disturbances in the mid-latitude ionosphere A.Saito1,2, M.C. Kelley1, T. Tsugawa2, J.J. Makela1,
Mid-latitude Electron Density Variations Under Magnetospheric Substorm Conditions As Determined From Istanbul Dynasonde Observations Aysegul Ceren MORAL,
An overview of the ionospheric research at INPE, Brazil
Exploring the ionosphere of Mars
Exploring the ionosphere of Mars
The Ionosphere Equatorial Anomaly.
The Vertical Structure of the Martian Ionosphere
Evaluation of IRI-2012 by comparison with JASON-1 TEC and incoherent scatter radar observations during the solar minimum period Eun-Young Ji,
A. Ippolito(1), C. Cesaroni(1) and L. Spogli(1,2)  
Presentation transcript:

Behavior of the total electron content over three stations of the LISN zone M. Mosert 1, M. Gende 2,C. Brunini 2, R.Ezquer 3,4 1 Instituto de Ciencias Astronómicas, de la Tierra y del Espacio (ICATE)-CONICET- UNSJ, Avda. España 1512 (Sur), 5400 San Juan, Argentina, [ 2 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata- CONICET, La Plata, Argentina 3 CIASuR, Facultad Regional Tucumán, Universidad Tecnológica Nacional, Tucumán, Argentina. 4 Laboratorio de Ionósfera, Dpto. de Física, FACET, UNT- CONICET, Tucumán, Argentina LISN 2 Workshop 7-11 November, 2011, Sao Jose Dos Campos, Brazil

In this talk We analyze the behavior of total electron content using data from Jicamarca (-12.0°S; 283°E); Tucuman (-26.9°S; 294.6°E) and El Leoncito, San Juan (-31.5°S; 290.4°E). The database includes TEC measurements obtained from Digisonde observations (ITEC) and GPS signals (GPSTEC). The day to day variability is analyzed. Comparisons between observations and the IRI –2007 predictions are also done.

Data Used Station Lat. Long. Years Rz12 Jicamarca -12.0° S 283° E HSA-LSA Tucuman -26.9°S 294.6°E 2008 LSA El Leoncito -31.5°S 290.4°E 2008 LSA Representative months: January (summer), April (fall), July (winter) and October (spring) Universal Time: 00 to 23

Data Used ITEC: (h= 1000 km) obtained from digisonde ionograms using the true height inversion program NHPC (Reinisch and Huang, 1983; Huang and Reinisch, 1996) GPSTEC: Vertical TEC derived from oblique GPS signals using La Plata Ionospheric Model, LPIM (Brunini et al, 2001) IRITEC: (h =1000 km) obtained from IRI-2007 version (3 Topside options: IRI-2001, IRI-2001 corrected and NeQuick).

Our analysis 1.Behavior of GPSTEC over Jicamarca, Tucumán and El Leoncito, San Juan 2.Behavior of ITEC over Jicamarca 3.Analysis of topside electron density profiles

1. Behavior of GPSTEC over Jicamarca, Leoncito and Tucuman

Seasonal Variations – 2008 (Rz12= 2.8) Fig. 1

Latitudinal Variations – GPSTEC (Rz12= 2.8) Fig. 2

2. Behavior of ITEC over Jicamarca Seasonal Variations Solar Activity Variations Day to Day Variability Comparisons between observations and IRI predictions

ITEC – Median or Mean values? Jicamarca 2002 (Rz12= 102) F Fig. 3

Jicamarca 2006 (Rz12=16) Fig. 4

Fig 5.Jicamarca- Medians and Quartiles (HSA)

Fig 6. Jicamarca- Medians and Quartiles (LSA)

Fig. 7. Jicamarca- Medians and Quartiles (LSA)

Fig. 8 Jicamarca ITEC Seasonal Variations 2006 (Rz12= 16) – 2002 (Rz12= 102)

Fig. 9.

Fig. 10 Jicamarca ITEC – Solar Activity Variations

Day to Day Variability Variability indexes Standard Deviations (SD) V%: Standard Deviations % = (SD/mean) * 100 Upper and lower quartiles Cup= upper quartile/median Cup >1 Clo= lower quartile/median Clo <1 Variability index: Cup-Clo

Fig. 11 Jicamarca - ITEC – 2006 (LSA: Rz12= 16) Variability indexes Cup and Clo

Jicamarca - ITEC – 2002 (HSA: Rz12= 102) Variability indexes Cup and Clo Fig. 12

Fig. 13 Jicamarca – ITEC – 2002 (HSA) / 2006(LSA) Variability index V%

Comparisons between ITEC and IRITEC predictions

Fig. 14 Jicamarca - IRITEC predictions 2006 Rz= 16

Jicamarca 2002 – ITEC / IRITEC Fig. 15

3. Topside Electron Density Profiles

Fig. 16 Jicamarca 13/11/2001 (Rz12= 111)

Fig. 17 Jicamarca 11/06/2002 (Rz12= 102)

Fig. 18 Jicamarca 15/04/2004 (Rz12= 42)

Fig. 19 Jicamarca 28/06/2006 (Rz12= 16)

Fig. 20 Jicamarca 30/06/2006 (Rz12= 16)

Summary A study of the behavior of the total electron content (TEC) has been done using measurements obtained at Jicamarca, Perú (12.0 S; E) and at Tucumán (26.9 S; E ) and El Leoncito, San Juan (31.5 S; E ), Argentina. The database includes TEC data derived from ground-based ionosonde data (ITEC) and from GPS satellite signals (GPSTEC). The diurnal, seasonal, solar activity variations and the day to day variability have been analyzed. Comparisons with the predictions of the last version of the International Reference Ionosphere model (IRI-2007) are also done. The results show that the total electron content increases gradually from hours of minimum TEC (05-06 LT) in all the seasons reaching maximum values around midday. At sunset the TEC values begin to decrease reaching minimum values around sunrise. The TEC measurements generally show lower values in winter than in summer. The winter-summer differences are not so evident in the year of low solar activity. The largest daytime peak values are observed in the two equinoctial months.The IRI predictions generally overestimate the total electron content during nighttime and underestimate during daytime.Taking into account that the most contribution of TEC comes from the topside electron density profile, these results suggest that the discrepancies between IRI predictions and TEC measurements are due to the shape of the topside profile assumed by the model. In general NeQuick topside option follows better the ISR data.

Final Comments Taking into account these results additional efforts are being done in order: (a)To improve the modeling of the electron density profile. (b) To advance in the formulation of a day to day variability model. and some comments about the new ionosone installed at Tucuman.

B. San Martin B. Belgrano (IAA) Tucumán 2 (CIASUR- FRT and UTN) La Plata (GESA-UNLP) Operative ionospheric stations

Tucumán (-26.9º S, 294.6º E) is placed near the Southern crest of the equatorial anomaly. Since 1957 to 1987 ionospheric measurements were obtained with the analogue ionosonde of the Ionospheric Station of National University of Tucumán (UNT). In 2007, within the Italian-Argentine collaboration supported by the Istituto Italo Latino Americano (IILA), an Advanced Ionospheric Sounder (AIS) built at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, was installed at the Upper Atmosphere and Radiopropagation Research Center (Centro de Investigación de Atmósfera Superior y Radiopropagación – CIASUR) of the Tucumán Regional Faculty of the National Technological University (UTN). That ionosonde is equipped with Autoscala, software able to perform an automatic scaling of the ionograms. Figure 1 shows AIS, the antenna and an ionogram obtained at CIASUR.

Fig. 1. AIS, the antenna and an ionogram obtained at CIASUR

SF and Scintillations 1 1:30 2 2:30 UT 1:45 UT Satélite 2 22:45 LT

3:45 UT Satélite 23 0:45 LT

4:00 UT Satélite 13 1:00 hs LT

First results The data recorded by the AIS-INGV/Autoscala system installed at CIASUR showed ionograms with possible additional stratifications, different to E, F1 and F2 layers (Pezzopane et al 2007). Fig. 2 shows an example were a F1.5 additional stratification is observed.

Fig. 2. Ionograms recorded on 23 September 2007 from 14:05 to 14:45 UT by the AIS-INGV ionosonde installed at Tucumán, and autoscaled by Autoscala. The development and decay of a F1.5 additional stratification are highlighted using open circles. (From Pezzopane et al 2007)

First results Range spread-F (RSF) and occurrence of “satellite” traces prior to RSF onset were also studied with AIS measurements. (Cabrera et al., 2010). Fig. 3 shows a case where ST and RSF are observed.

Fig. 3. Sequence of ionograms recorded on 4 September 2007 showing (a) diffuse trace in the second order mode, (b) ST appearance adjacent to the low- frequency end of the first order mode, (c) RSF commencement, and (d) RSF fully developed. (From Cabrera et al, 2010)

Acknowledgments We gratefully acknowledge to FAPESP for the financial support and to INPE for hosting this event in particular to Eurico di Paula. The authors wish to thank to the staff of the JRO for the use of ISR data.

Obrigado!!