Piyush Kumar (Lecture 7: Reductions)

Slides:



Advertisements
Similar presentations
NP-Hard Nattee Niparnan.
Advertisements

Theory of Computing Lecture 18 MAS 714 Hartmut Klauck.
1 NP-completeness Lecture 2: Jan P The class of problems that can be solved in polynomial time. e.g. gcd, shortest path, prime, etc. There are many.
CSCI 256 Data Structures and Algorithm Analysis Lecture 22 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
NP-complete and NP-hard problems Transitivity of polynomial-time many-one reductions Concept of Completeness and hardness for a complexity class Definition.
The Theory of NP-Completeness
COMP 482: Design and Analysis of Algorithms
CSC5160 Topics in Algorithms Tutorial 2 Introduction to NP-Complete Problems Feb Jerry Le
NP-COMPLETENESS. 2 Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition.
Graphs 4/16/2017 8:41 PM NP-Completeness.
1 Polynomial Church-Turing thesis A decision problem can be solved in polynomial time by using a reasonable sequential model of computation if and only.
NP-Complete Problems Reading Material: Chapter 10 Sections 1, 2, 3, and 4 only.
The Theory of NP-Completeness
Polynomial-Time Reductions
1 Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
1 CSE 417: Algorithms and Computational Complexity Winter 2001 Lecture 23 Instructor: Paul Beame.
Analysis of Algorithms CS 477/677
NP-Completeness (2) NP-Completeness Graphs 4/17/2017 6:25 AM x x x x x
CSE 421 Algorithms Richard Anderson Lecture 27 NP Completeness.
Toward NP-Completeness: Introduction Almost all the algorithms we studies so far were bounded by some polynomial in the size of the input, so we call them.
Prof. Swarat Chaudhuri COMP 482: Design and Analysis of Algorithms Spring 2013 Lecture 22.
1 Algorithm Design Patterns and Anti-Patterns Algorithm design patterns.Ex. n Greed.O(n log n) interval scheduling. n Divide-and-conquer. O(n log n) FFT.
11/3/10 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne Adam Smith Algorithm Design and Analysis L ECTURES NP-completeness.
1 Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
The Theory of NP-Completeness 1. Nondeterministic algorithms A nondeterminstic algorithm consists of phase 1: guessing phase 2: checking If the checking.
NP-Complete Problems CSC 331: Algorithm Analysis NP-Complete Problems.
1 The Theory of NP-Completeness 2012/11/6 P: the class of problems which can be solved by a deterministic polynomial algorithm. NP : the class of decision.
Nattee Niparnan. Easy & Hard Problem What is “difficulty” of problem? Difficult for computer scientist to derive algorithm for the problem? Difficult.
CSCI-256 Data Structures & Algorithm Analysis Lecture Note: Some slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. 27.
CSEP 521 Applied Algorithms Richard Anderson Lecture 10 NP Completeness.
Prabhas Chongstitvatana1 NP-complete proofs The circuit satisfiability proof of NP- completeness relies on a direct proof that L  p CIRCUIT-SAT for every.
Week 10Complexity of Algorithms1 Hard Computational Problems Some computational problems are hard Despite a numerous attempts we do not know any efficient.
CSE 024: Design & Analysis of Algorithms Chapter 9: NP Completeness Sedgewick Chp:40 David Luebke’s Course Notes / University of Virginia, Computer Science.
EMIS 8373: Integer Programming NP-Complete Problems updated 21 April 2009.
1 Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
Sailesh Prabhu Prof. Swarat Chaudhuri COMP 482: Design and Analysis of Algorithms Spring 2013.
1 The Theory of NP-Completeness 2 Cook ’ s Theorem (1971) Prof. Cook Toronto U. Receiving Turing Award (1982) Discussing difficult problems: worst case.
1 Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
Unit 9: Coping with NP-Completeness
NP-Complete Problems. Running Time v.s. Input Size Concern with problems whose complexity may be described by exponential functions. Tractable problems.
1 Chapter 34: NP-Completeness. 2 About this Tutorial What is NP ? How to check if a problem is in NP ? Cook-Levin Theorem Showing one of the most difficult.
CS 3343: Analysis of Algorithms Lecture 25: P and NP Some slides courtesy of Carola Wenk.
CSE 589 Part V One of the symptoms of an approaching nervous breakdown is the belief that one’s work is terribly important. Bertrand Russell.
CSCI-256 Data Structures & Algorithm Analysis Lecture Note: Some slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. 29.
Fundamentals of Informatics Lecture 14 Intractability and NP-completeness Bas Luttik.
CS6045: Advanced Algorithms NP Completeness. NP-Completeness Some problems are intractable: as they grow large, we are unable to solve them in reasonable.
Lecture 25 NP Class. P = ? NP = ? PSPACE They are central problems in computational complexity.
28.
NPC.
NP-Completeness Note. Some illustrations are taken from (KT) Kleinberg and Tardos. Algorithm Design (DPV)Dasgupta, Papadimitriou, and Vazirani. Algorithms.
CSE 421 Algorithms Richard Anderson Lecture 27 NP-Completeness Proofs.
COSC 3101A - Design and Analysis of Algorithms 14 NP-Completeness.
1 The Theory of NP-Completeness 2 Review: Finding lower bound by problem transformation Problem X reduces to problem Y (X  Y ) iff X can be solved by.
CSE 332: NP Completeness, Part II Richard Anderson Spring 2016.
ICS 353: Design and Analysis of Algorithms NP-Complete Problems King Fahd University of Petroleum & Minerals Information & Computer Science Department.
Data Structures and Algorithm Analysis Lecture 23
Richard Anderson Lectures NP-Completeness
Richard Anderson Lecture 26 NP-Completeness
Polynomial-Time Reduction
Richard Anderson Lecture 26 NP-Completeness
Richard Anderson Lecture 25 Min Cut Applications and NP-Completeness
NP-Completeness Yin Tat Lee
Intro to Theory of Computation
Intro to Theory of Computation
ICS 353: Design and Analysis of Algorithms
Intro to Theory of Computation
Richard Anderson Lecture 25 NP-Completeness
Chapter 8 NP and Computational Intractability
NP-Completeness Yin Tat Lee
CSE 6408 Advanced Algorithms.
Presentation transcript:

Piyush Kumar (Lecture 7: Reductions) Advanced Algorithms Piyush Kumar (Lecture 7: Reductions) Welcome to COT5405 Based on Kevin Wayne’s slides

Algorithm Design Patterns and Anti-Patterns Defeating Exponentiality. Ex. Greed. O(n2) Dijkstra’s SSSP (dense) Divide-and-conquer. O(n log n) FFT. Dynamic programming. O(n2) edit distance. Duality. O(n3) bipartite matching. Reductions. Local search. Randomization. No shortcuts seem possible NP-completeness. O(nk) algorithm unlikely. PSPACE-completeness. O(nk) certification algorithm unlikely. Undecidability. No algorithm possible.

8.1 Polynomial-Time Reductions

Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. [Cobham 1964, Edmonds 1965, Rabin 1966] Those with polynomial-time algorithms. Yes Probably no Shortest path, Euler Path Longest path Matching 3D-matching Min cut Max cut 2-SAT, Horn SAT 3-SAT Planar 4-color Planar 3-color Bipartite vertex cover Vertex cover Primality testing Factoring

Classify Problems Desiderata. Classify problems according to those that can be solved in polynomial-time and those that cannot. Provably requires exponential-time. Given a Turing machine, does it halt in at most k steps? Given a board position in an n-by-n generalization of chess, can black guarantee a win? Frustrating news. Huge number of fundamental problems have defied classification for decades. This chapter. Show that these fundamental problems are "computationally equivalent" and appear to be different manifestations of one really hard problem.

Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using: Polynomial number of standard computational steps, plus Polynomial number of calls to oracle that solves problem Y. Notation. X  P Y. Remark: We pay for time to write down instances sent to black box  instances of Y must be of polynomial size. computational model supplemented by special piece of hardware that solves instances of Y in a single step Cook reduction = polynomial time Turing reduction Karp reduction = polynomial many-one reduction = polynomial transformation

Polynomial-Time Reduction Purpose. Classify problems according to relative difficulty. Design algorithms. If X  P Y and Y can be solved in polynomial-time, then X can also be solved in polynomial time. Establish intractability. If X  P Y and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time. Establish equivalence. If X  P Y and Y  P X, we use notation X  P Y. up to cost of reduction

Reduction By Simple Equivalence Basic reduction strategies. Reduction by simple equivalence. Reduction from special case to general case. Reduction by encoding with gadgets.

Independent Set INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a subset of vertices S  V such that |S|  k, and for each edge at most one of its endpoints is in S? Ex. Is there an independent set of size  6? Yes. Ex. Is there an independent set of size  7? No. Application: find set of mutually non-conflicting points independent set

Vertex Cover VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices S  V such that |S|  k, and for each edge, at least one of its endpoints is in S? Ex. Is there a vertex cover of size  4? Yes. Ex. Is there a vertex cover of size  3? No. TOY application = art gallery problem: place guards within an art gallery so that all corridors are visible at any time vertex cover

Vertex Cover and Independent Set Claim. VERTEX-COVER P INDEPENDENT-SET. Pf. We show S is an independent set iff V  S is a vertex cover. independent set vertex cover

Vertex Cover and Independent Set Claim. VERTEX-COVER P INDEPENDENT-SET. Pf. We show S is an independent set iff V  S is a vertex cover.  Let S be any independent set. Consider an arbitrary edge (u, v). S independent  u  S or v  S  u  V  S or v  V  S. Thus, V  S covers (u, v).  Let V  S be any vertex cover. Consider two nodes u  S and v  S. Observe that (u, v)  E since V  S is a vertex cover. Thus, no two nodes in S are joined by an edge  S independent set. ▪

Reduction from Special Case to General Case Basic reduction strategies. Reduction by simple equivalence. Reduction from special case to general case. Reduction by encoding with gadgets.

Set Cover SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sm of subsets of U, and an integer k, does there exist a collection of  k of these sets whose union is equal to U? Sample application. m available pieces of software. Set U of n capabilities that we would like our system to have. The ith piece of software provides the set Si  U of capabilities. Goal: achieve all n capabilities using fewest pieces of software. Ex: U = { 1, 2, 3, 4, 5, 6, 7 } k = 2 S1 = {3, 7} S4 = {2, 4} S2 = {3, 4, 5, 6} S5 = {5} S3 = {1} S6 = {1, 2, 6, 7}

Vertex Cover Reduces to Set Cover Claim. VERTEX-COVER  P SET-COVER. Pf. Given a VERTEX-COVER instance G = (V, E), k, we construct a set cover instance whose size equals the size of the vertex cover instance. Construction. Create SET-COVER instance: k = k, U = E, Sv = {e  E : e incident to v } Set-cover of size  k iff vertex cover of size  k. ▪ SET COVER U = { 1, 2, 3, 4, 5, 6, 7 } k = 2 Sa = {3, 7} Sb = {2, 4} Sc = {3, 4, 5, 6} Sd = {5} Se = {1} Sf= {1, 2, 6, 7} VERTEX COVER a b e7 e2 e4 e3 f e6 c e1 e5 k = 2 e d

8.2 Reductions via "Gadgets" Basic reduction strategies. Reduction by simple equivalence. Reduction from special case to general case. Reduction via "gadgets."

Satisfiability Literal: A Boolean variable or its negation. Clause: A disjunction of literals. Conjunctive normal form: A propositional formula  that is the conjunction of clauses. SAT: Given CNF formula , does it have a satisfying truth assignment? 3-SAT: SAT where each clause contains exactly 3 literals. Any logical formula can be expressed in CNF. each corresponds to a different variable Ex: Yes: x1 = true, x2 = true x3 = false.

3 Satisfiability Reduces to Independent Set Claim. 3-SAT  P INDEPENDENT-SET. Pf. Given an instance  of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff  is satisfiable. Construction. G contains 3 vertices for each clause, one for each literal. Connect 3 literals in a clause in a triangle. Connect literal to each of its negations. G k = 3

3 Satisfiability Reduces to Independent Set Claim. G contains independent set of size k = || iff  is satisfiable. Pf.  Let S be independent set of size k. S must contain exactly one vertex in each triangle. Set these literals to true. Truth assignment is consistent and all clauses are satisfied. Pf  Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. ▪ and any other variables in a consistent way G k = 3

Review Basic reduction strategies. Simple equivalence: INDEPENDENT-SET  P VERTEX-COVER. Special case to general case: VERTEX-COVER  P SET-COVER. Encoding with gadgets: 3-SAT  P INDEPENDENT-SET. Transitivity. If X  P Y and Y  P Z, then X  P Z. Pf idea. Compose the two algorithms. Ex: 3-SAT  P INDEPENDENT-SET  P VERTEX-COVER  P SET-COVER. Proof idea for transitivity: compose the two algorithms. Given an oracle for Z, can solve instance of X: run the algorithm for X using a oracle for Y each time oracle for Y is called, simulate it in a polynomial number of steps by using algorithm for Y, plus oracle calls to Z

Self-Reducibility Decision problem. Does there exist a vertex cover of size  k? Search problem. Find vertex cover of minimum cardinality. Self-reducibility. Search problem  P decision version. Applies to all (NP-complete) problems in this chapter. Justifies our focus on decision problems. Ex: to find min cardinality vertex cover. (Binary) search for cardinality k* of min vertex cover. Find a vertex v such that G  { v } has a vertex cover of size  k* - 1. any vertex in any min vertex cover will have this property Include v in the vertex cover. Recursively find a min vertex cover in G  { v }. not explicitly covered in book, but justifies our focus on decision problems instead of search problems more generally, all np-complete problems are self-reducible delete v and all incident edges

A  P B

Decision Problems Decision problem. X is a set of strings. Instance: string s. Algorithm A solves problem X: A(s) = yes iff s  X. Polynomial time. Algorithm A runs in poly-time if for every string s, A(s) terminates in at most p(|s|) "steps", where p() is some polynomial. PRIMES: X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. } Algorithm. [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|12+eps. length of s

Definition of P P. Decision problems for which there is a poly-time algorithm. Problem Description Algorithm Yes No MULTIPLE Is x a multiple of y? Grade school division 51, 17 51, 16 RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51 PRIMES Is x prime? AKS (2002) 53 51 EDIT- DISTANCE Is the edit distance between x and y less than 5? Dynamic programming niether neither acgggt ttttta LSOLVE Is there a vector x that satisfies Ax = b? Gauss-Edmonds elimination Two integers are relatively prime if they share no common positive factors (divisors) except 1.

NP Certification algorithm intuition. Certifier views things from "managerial" viewpoint. Certifier doesn't determine whether s  X on its own; rather, it checks a proposed proof t that s  X. Def. Algorithm C(s, t) is a certifier for problem X if for every string s, s  X iff there exists a string t such that C(s, t) = yes. NP. Decision problems for which there exists a poly-time certifier. Remark. NP stands for nondeterministic polynomial-time. "certificate" or "witness" C(s, t) is a poly-time algorithm and |t|  p(|s|) for some polynomial p().

Certifiers and Certificates: Composite COMPOSITES. Given an integer s, is s composite? Certificate. A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover |t|  |s|. Certifier. Instance. s = 437,669. Certificate. t = 541 or 809. Conclusion. COMPOSITES is in NP. boolean C(s, t) { if (t  1 or t  s) return false else if (s is a multiple of t) return true else } 437,669 = 541  809

Certifiers and Certificates: 3-Satisfiability SAT. Given a CNF formula , is there a satisfying assignment? Certificate. An assignment of truth values to the n boolean variables. Certifier. Check that each clause in  has at least one true literal. Ex. Conclusion. SAT is in NP. instance s certificate t

Certifiers and Certificates: Hamiltonian Cycle HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node? Certificate. A permutation of the n nodes. Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation. Conclusion. HAM-CYCLE is in NP. instance s certificate t

P, NP, EXP P. Decision problems for which there is a poly-time algorithm. EXP. Decision problems for which there is an exponential-time algorithm. NP. Decision problems for which there is a poly-time certifier. Claim. P  NP. Pf. Consider any problem X in P. By definition, there exists a poly-time algorithm A(s) that solves X. Certificate: t = , certifier C(s, t) = A(s). ▪ Claim. NP  EXP. Pf. Consider any problem X in NP. By definition, there exists a poly-time certifier C(s, t) for X. To solve input s, run C(s, t) on all strings t with |t|  p(|s|). Return yes, if C(s, t) returns yes for any of these. ▪ epsilon = empty string, B ignores t and just evaluates A(s) for an answer.

The Main Question: P Versus NP Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel] Is the decision problem as easy as the certification problem? Clay $1 million prize. If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, … If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, … Consensus opinion on P = NP? Probably no. EXP NP EXP P P = NP If P  NP If P = NP would break RSA cryptography (and potentially collapse economy) Cook formulated conjecture explicitly, others presented close approximations “ The classes of problems which are respectively known and not known to have good algorithms are of great theoretical interest…. I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are the same as for any mathematical conjecture: (i) It is a legitimate mathematical possibility and (ii) I do not know.” -- Jack Edmonds, 1966 If no, then computer scientists can say "I told you so"