B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | www.hzdr.de Helmholtz-Zentrum Dresden-Rossendorf B. Kämpfer PW Laser Workshop, HZDR 2011 Strong-Field.

Slides:



Advertisements
Similar presentations
B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Helmholtz-Zentrum Dresden-Rossendorf B. Kämpfer Indian Summer School 2011 Extreme.
Advertisements

Feynman Diagrams Feynman diagrams are pictorial representations of
Femtosecond lasers István Robel
I0I0 I 0 V 0 V0V0 f f 0 1)Current depends on potential; max current I 0 (saturation) for high voltages. I 0 reached when all electrons are collected 2)Positive.
Quantum Field Theory for Gravity and Dark Energy Sang Pyo Kim Kunsan Nat’l Univ. & APCTP Co sPA2009, U. Melbourne, 2009.
Hadron physics with GeV photons at SPring-8/LEPS II
Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
1 My Chapter 27 Lecture. 2 Chapter 27: Early Quantum Physics and the Photon Blackbody Radiation The Photoelectric Effect Compton Scattering Early Models.
Page 1 Wave / Particle Duality PART I Electrons as discrete Particles. –Measurement of e (oil-drop expt.) and e/m (e-beam expt.). Photons as discrete Particles.
APHY201 4/29/ The Electron   Cathode rays are light waves or particles?
High Intensity Laser Electron Scattering David D. Meyerhofer IEEE Journal of Quantum Electronics, Vol. 33, No. 11, November 1997.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
KAPITZA-DIRAC EFFECT Eric Weaver Phys 4P62. General Outline  Theorized in 1933 by Kapitza and Dirac  Reflection of electrons from standing light waves.
Dark Energy and Quantum Gravity Dark Energy and Quantum Gravity Enikő Regős Enikő Regős.
1 Chapter 38 Light Waves Behaving as Particles February 25, 27 Photoelectric effect 38.1 Light absorbed as photons: The photoelectric effect Photoelectric.
The Intensity-Pulse Duration Conjecture: ELI’s Lynchpin ELI-NP: The Way Ahead Bucharest March 10, 2011 Gérard Mourou, Institut de Lumière Extrême 28/02/11mourou.
Generation of short pulses
The mathematics of classical mechanics Newton’s Laws of motion: 1) inertia 2) F = ma 3) action:reaction The motion of particle is represented as a differential.
Chiral freedom and the scale of weak interactions.
Modified Coulomb potential of QED in a strong magnetic field Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics.
Prof. Dr. Dr. h. c. R. Sauerbrey | Scientific Director | The HZDR Program towards a Helmholtz beamline at XFEL Roland Sauerbrey Helmholtz-Zentrum.
Chapter 2: Particle Properties of Waves
Classical ConceptsEquations Newton’s Law Kinetic Energy Momentum Momentum and Energy Speed of light Velocity of a wave Angular Frequency Einstein’s Mass-Energy.
Physics of Radiography
Physics 30 – Electromagnetic Radiation – Part 2 Wave-Particle Duality
Radiation Detection and Measurement, JU, First Semester, (Saed Dababneh). 1 Spectrum if all energy is captured in detector. Allows identification.
Quantum Field Theoretic Description of Electron-Positron Plasmas Markus H. Thoma Max-Planck-Institute for Extraterrestrial Physics, Univ. Giessen, MAP,
A new era in fundamental physics Higgs: from theory to experiments André França – Baku 2013.
B. Kampfer I Institute of Radiation Physics I Member of the Helmholtz Association page 1 B. Kampfer I Institute of Radiation Physics I
High purity x-ray polarimetry Ingo Uschmann B. Marx, K. Schulze, S. Hoefer, R. Loetzsch, T. Kämpfer, O. Wehrhan, H. Marschner, E. Förster, M. Kaluza, H.
How do we detect photons? Kensuke Okada RIKEN BNL Research Center April 20,
Advanced methods of molecular dynamics 1.Monte Carlo methods 2.Free energy calculations 3.Ab initio molecular dynamics 4.Quantum molecular dynamics 5.Trajectory.
Nuclear Physics Type talks 1) Adriana Gagyi-Palffy 2) Ken Ledingham 3) Fred Hartmann 4) Silvia Cipiccia 5) Chris Murphy.
Classical and quantum electrodynamics e®ects in intense laser pulses Antonino Di Piazza Workshop on Petawatt Lasers at Hard X-Ray Sources Dresden, September.
Dian-Yong Chen Institute of Modern Physics, CAS FHNP’15 Beijing Hadronic Loop Contributions to Heavy Quarkonium Decay
Quarknet Syracuse Summer Institute Strong and EM forces 1.
Fundamental principles of particle physics G.Ross, CERN, July08.
The Stimulated Breit-Wheeler Process as a source of Background e + e - Pairs at the ILC Dr Anthony Hartin JAI, Oxford University Physics, Denys Wilkinson.
K. Z. Hatsagortsyan, G. Yu. Kryuchkyan*, A. Ipp, J. Evers and C. H. Keitel Max-Planck-Institut für Kernphysik, Heidelberg, Germany *Yerevan State University,
Neutrino mass spectroscopy with atoms-- experimental status-- N. Sasao and M. Yoshimura (Okayama U.) for SPAN collaboration 2015/8/2117th Lomonosov1.
Photon-Photon Scattering Mattias Marklund Department of Physics Umeå University Sweden Supported by the European Research Council Swedish Research Council.
Accelerator Physics, JU, First Semester, (Saed Dababneh). 1 In the figure: Photoelectric suppressed. Single Compton (effect of crystal dimensions).
The Higgs Boson Observation (probably) Not just another fundamental particle… July 27, 2012Purdue QuarkNet Summer Workshop1 Matthew Jones Purdue University.
10-th International Workshop on H.E.S.P. September 16-21, 2003, Dubna, Russia Bradyons and Tachyons S.B. Nurushev Institute for High Energy Physics.
Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009.
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
1 Quantum Mechanics Experiments 1. Photoelectric effect.
INTERACTIONS OF RADIATION WITH MATTER. twCshttp:// twCs
Chapter 33 Early Quantum Theory and Models of Atom.
Non-Linear Effects in Strong EM Field Alexander Titov Bogoliubov Lab. of Theoretical Physics, JINR, Dubna International.
Testing Quantum Electrodynamics at critical background electromagnetic fields Antonino Di Piazza International Conference on Science and Technology for.
Heavy quark energy loss in finite length SYM plasma Cyrille Marquet Columbia University based on F. Dominguez, C. Marquet, A. Mueller, B. Wu and B.-W.
LASER PHYSICS 2014 SOFIA, BULGARIA 16 July 2014 PONDEROMOTIVE POTENTIAL and the INTENSE-FIELD MASS SHIFT H. R. Reiss Max Born Institute, Berlin, Germany.
Andreas Ringwald (DESY) Physics of fundamental Symmetries and Interactions - PSI2013 Paul-Scherrer-Institut, Villigen, CH 8-12 September 2013 Fundamental.
NON COMMUTATIVITY and LORENTZ VIOLATION in RELATIVISTIC HEAVY ION COLLISIONS PAOLO CASTORINA Università and INFN-Catania-Italy Martina Franca June.2010.
A model for large non-standard interactions of neutrinos leading to the LMA-dark solution Yasaman Farzan IPM, Tehran.
1 1 Office of Science Multiple Colliding EM pulses: Depletion of intense fields S. S. Bulanov 1, D. Seipt 2, T. Heinzl 3, M. Marklund 4 1 Lawrence Berkeley.
Fastest Data Processing in Image Reconstruction for Compton Camera Imaging
Laser wakefield accelerated electrons
Handout 3 : Interaction by Particle Exchange and QED
Tunable Electron Bunch Train Generation at Tsinghua University
Dr. D. Z. LI & Prof. J. GAO Accelerator Center, IHEP
Luca Serafini – INFN-Milan and University of Milan
Detecting Chameleons in the Laboratory
Peking University: Jinqing Yu, Ronghao Hu, Haiyang Lu & Xueqing Yan
Determining the Emergent Properties of Hot and Dense Nuclear Matter
Particle Physics Part 1 -James Joyce Contents: Particle Accelerators
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Helmholtz-Zentrum Dresden-Rossendorf B. Kämpfer PW Laser Workshop, HZDR 2011 Strong-Field Physics: Summary G. Paulus, C. Harvey, F. Karbstein, A. Ilderton, K. Hatsagortsyan, D. Seipt, A. Di Piazza, S. Smolyansky, N. Elkina, C. Klier (in the order of the talks)

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Highlights Rosner: FAIR/APPA/SPARC e+ e- high-field QED tests Paulus: birefringence in e.m. field - prospects for XFEL + PW L Harvey: LL radiation damping tests in PW L vs. XFEL: reflection of e- in counterpropagating wave Karbstein: seeking field configurations for large effects of e+ e- pair production and birefringence Ilderton: do better than E-144 – mass shift Hatsagortsyan: e.m. modulation of vacuum – Bragg scatt. & streak camera via e+ e- in gamma rays Seipt: short-pulse physics of Compton & e+ e- Di Piazza: radiation damping & cascades Smolyansky: kinetics for Schwinger Elkina: kinetics for cascades and related plasma processes Klier: plasma processes

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Energy Scales E [eV] 110^410^9 m XFEL PW laser PW e-XFEL e- beam opportunities: - PW laser + XFEL e+ e- pair production deeply below threshold birefringence - XFEL + PW e- beam Compton 2-photon Compton

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Gauge Theories w/o SSB Abelian (QED) non-Abelian (QCD) E E 1/137 1 sQCD pQCD Landau pole UV slavery asymp. freedom non-trivial vacuum: condensates not neccessary weak-coupling: alpha too large Furry picture: A = A_sQED + A_pQED resummed to all orders in alpha 0

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Strong Fields FELIX LCLS Ti:Sa

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Electron in Laser Pulse D. Seipt et al., 2010 circ lin

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Thomson-Compton Effect u channel Compton Heinzl, Seipt, BK, PRA 2010 Seipt, BK, PRA 2011 Seipt, BK, PR ST AB 2011 classical sQED

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Cross Channel: Pair Production Breit-Wheeler T. Nousch, diploma thesis, Dresden st 2nd 3rd Ritus 1985 m*

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Two-Photon Compton Process as a Signature of Unruh Effect exchange Unruh: frame dependence of vacuum T_U ~ acceleration accelerated electron emits entangled photon pairs Suenert, diploma thesis Dresden 2010; Seipt, BK, 2011

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Trident Process (= Virtual Compton Process) (= cross channel of Moller/Bhaba scattering) Di Piazza et al., PRL 2010 Ilderton, PRL 2011 photon propagator: on-shell + off-shell Oleinik divergences/Zeldovich levels first step in cascades: avalanches of e+ e- pairs plasma

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Birefrigence in e.m. Wave +... light-light scatt. Heinzl et al, Opt. Comm. 2006

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | e+ e- Nano Droplets Yaresko, Munshi, BK, Phys. Plasma 2011 Munshi, BK, PRA 2009 analog to early universe: e+ e- annihilation Hartmann, Otto, BK, 2011

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Muon Pair Production Titov, BK, PR ST AB 2009 Bethe-Heitler

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Neutrino Pair Production Titov, BK, Hosaka, Takabe, PRD 2011

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Le Chateliers Principle (1885) a system under stress populates new degrees of freedom (minimizes the disturbance) high-intensity e.m. field decays into e+ e- pairs is not a threshold effect, no criticality quantum kinetics Blaschke, Gregory, Smolyansky et al. Hebenstreit, Alkofer, PRL Ringwald, PLB 2001

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Summary/Outlook Helmholtz beam line at XFEL = XFEL + PW Laser = great potential for precision tests of strong-field QED