Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 5.7 Arithmetic and Geometric Sequences.

Slides:



Advertisements
Similar presentations
Choi 2012 Arithmetic Sequence A sequence like 2, 5, 8, 11,…, where the difference between consecutive terms is a constant, is called an arithmetic sequence.
Advertisements

Essential Question: What is a sequence and how do I find its terms and sums? How do I find the sum & terms of geometric sequences and series?
Section 5.7 Arithmetic and Geometric Sequences
Warm up 1. Determine if the sequence is arithmetic. If it is, find the common difference. 35, 32, 29, 26, Given the first term and the common difference.
Copyright © 2007 Pearson Education, Inc. Slide 8-1 Geometric Sequences  1, 2, 4, 8, 16 … is an example of a geometric sequence with first term 1 and each.
A geometric sequence is a list of terms separated by a constant ratio, the number multiplied by each consecutive term in a geometric sequence. A geometric.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 10 Further Topics in Algebra.
Geometric Sequences and Series
Geometric Sequences Section
Notes Over 11.3 Geometric Sequences
Geometric Sequences and Series
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 11 Further Topics in Algebra.
Section 7.2 Arithmetic Sequences Arithmetic Sequence Finding the nth term of an Arithmetic Sequence.
Arithmetic Sequences. A mathematical model for the average annual salaries of major league baseball players generates the following data. 1,438,0001,347,0001,256,0001,165,0001,074,000983,000892,000801,000.
12.2: Analyze Arithmetic Sequences and Series HW: p (4, 10, 12, 14, 24, 26, 30, 34)
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Copyright © 2011 Pearson Education, Inc. Slide A geometric sequence (or geometric progression) is a sequence in which each term after the first.
Section 3 Chapter Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives Geometric Sequences Find the common ratio of a geometric.
Copyright © 2007 Pearson Education, Inc. Slide 8-1.
OBJ: • Find terms of arithmetic sequences
Sequences & Series. Sequences  A sequence is a function whose domain is the set of all positive integers.  The first term of a sequences is denoted.
Geometric Sequences and Series Section Objectives Recognize, write, and find nth terms of geometric sequences Find the nth partial sums of geometric.
Copyright © 2007 Pearson Education, Inc. Slide , 2, 4, 8, 16 … is an example of a geometric sequence with first term 1 and each subsequent term is.
Geometric Sequences.
Arithmetic and Geometric Sequences Finding the nth Term 2,4,6,8,10,…
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 5 Number Theory and the Real Number System.
Chapter 11 Sequences, Induction, and Probability Copyright © 2014, 2010, 2007 Pearson Education, Inc Geometric Sequences and Series.
12.2, 12.3: Analyze Arithmetic and Geometric Sequences HW: p (4, 10, 12, 18, 24, 36, 50) p (12, 16, 24, 28, 36, 42, 60)
11.2 & 11.3: Sequences What is now proven was once only imagined. William Blake.
Copyright © Cengage Learning. All rights reserved. Sequences and Series.
9.3 Geometric Sequences and Series. 9.3 Geometric Sequences A sequence is geometric if the ratios of consecutive terms are the same. This common ratio.
12.3 – Analyze Geometric Sequences and Series. Geometric Sequence: Ratio of any term to the previous term is constant Common Ratio: Ratio each term is.
ADD To get next term Have a common difference Arithmetic Sequences Geometric Sequences MULTIPLY to get next term Have a common ratio.
May 1, 2012 Arithmetic and Geometric Sequences Warm-up: What is the difference between an arithmetic and geometric sequence? Write an example for each.
Geometric Sequence Sequences and Series. Geometric Sequence A sequence is geometric if the ratios of consecutive terms are the same. 2, 8, 32, 128, 512,...
Honors Precalculus Day 3 Section 11.3 Geometric Sequences The end of new material…BOO!!! 3/12/2016.
+ 8.4 – Geometric Sequences. + Geometric Sequences A sequence is a sequence in which each term after the first is found by the previous term by a constant.
Section 11.2 Arithmetic Sequences and Series Copyright ©2013, 2009, 2006, 2005 Pearson Education, Inc.
EXAMPLE 1 Evaluate recursive rules Write the first six terms of the sequence. a. a 0 = 1, a n = a n – b. a 1 = 1, a n = 3a n – 1 SOLUTION a. a 0.
Copyright © 2011 Pearson Education, Inc. Slide
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Geometric Sequences.
Geometric Sequences and Series
Patterns and Sequences
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
11.3 Geometric sequences; Geometric Series
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Geometric Sequences and Series
Warm-up Problems Consider the arithmetic sequence whose first two terms are 3 and 7. Find an expression for an. Find the value of a57. Find the sum of.
Aim: What is the geometric series ?
7-8 Notes for Algebra 1 Recursive Formulas.
11.3 – Geometric Sequences.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Section 5.7 Arithmetic and Geometric Sequences
Warm Up 1. Find 3f(x) + 2g(x) 2. Find g(x) – f(x) 3. Find g(-2)
10.2 Arithmetic Sequences and Series
Notes Over 11.5 Recursive Rules
Geometric Sequences.
Geometric Sequences.
Section 12.1 Sequences and Section 12.2 Arithmetic Sequences
Geometric Sequences and Series
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Geometric Sequences and series
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Geometric Sequence Skill 38.
Questions over HW?.
Arithmetic and Geometric Sequences
Section 12.3 Geometric Sequences; Geometric Series
Presentation transcript:

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 5.7 Arithmetic and Geometric Sequences

Copyright 2013, 2010, 2007, Pearson, Education, Inc. What You Will Learn About Arithmetic Sequences Geometric Sequences 5.7-2

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Sequences A sequence is a list of numbers that are related to each other by a rule. The terms in a sequence are the numbers that form the sequence

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Arithmetic Sequence An arithmetic sequence is a sequence in which each term after the first term differs from the preceding term by a constant amount. The common difference, d, is the amount by which each pair of successive terms differs. Example 1: 1, 5, 9, 13, 17,... d=

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Example 2: Write the first five terms of the arithmetic sequence with first term 9 and a common difference of –4. Solution The first five terms of the sequence are 9, 5, 1, –3, –

Copyright 2013, 2010, 2007, Pearson, Education, Inc. General or nth Term of an Arithmetic Sequence For an arithmetic sequence with first term a 1 and common difference d, the general or nth term can be found using the following formula. a n = a 1 + (n – 1)d 5.7-6

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Example 3: Determine the twelfth term of the arithmetic sequence whose first term is –5 and whose common difference is 3. Solution Replace: a 1 = –5, n = 12, d = 3 a n = a 1 + (n – 1)d a 12 = –5 + (12 – 1)3 = –5 + (11)3 =

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Example 4: Write an expression for the general or nth term, a n, for the sequence 1, 6, 11, 16,… Solution Substitute: a 1 = 1, d = 5 a n = a 1 + (n – 1)d = 1 + (n – 1)5 = 1 + 5n – 5 = 5n –

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Sum of the First n Terms of an Arithmetic Sequence The sum of the first n terms of an arithmetic sequence can be found with the following formula where a 1 represents the first term and a n represents the nth term

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Example 5: Determine the sum of the first 25 even natural numbers. Solution The sequence is 2, 4, 6, 8, 10, …, 50 Substitute a 1 = 2, a 25 = 50, n = 25 into the formula

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Geometric Sequences A geometric sequence is one in which the ratio of any term to the term that directly precedes it is a constant. This constant is called the common ratio, r. r can be found by taking any term except the first and dividing it by the preceding term

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Example 6: Write the first five terms of the geometric sequence whose first term, a 1, is 5 and whose common ratio, r, is 2. Solution The first five terms of the sequence are 5, 10, 20, 40,

Copyright 2013, 2010, 2007, Pearson, Education, Inc. General or nth Term of a Geometric Sequence For a geometric sequence with first term a 1 and common ratio r, the general or nth term can be found using the following formula. a n = a 1 r n–

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Example 7: Determine the twelfth term of the geometric sequence whose first term is –4 and whose common ratio is 2. Solution Replace: a 1 = –4, n = 12, r = 2 a n = a 1 r n–1 a 12 = –4 2 12–1 = – = – = –

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Example 8: Write an expression for the general or nth term, a n, for the sequence 2, 6, 18, 54,… Solution Substitute: a 1 = 2, r = 3 a n = a 1 r n–1 = 2(3) n–

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Sum of the First n Terms of an Geometric Sequence The sum of the first n terms of an geometric sequence can be found with the following formula where a 1 represents the first term and r represents the common ratio

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Example 9: Determine the sum of the first five terms in the geometric sequence whose first term is 4 and whose common ratio is 2. Solution Substitute a 1 = 4, r = 2, n = 5 into

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Example 9: Solution a 1 = 2, r = 2, n =