GAP Optique Geneva University 1 Quantum Communications at telecom wavelengths Nicolas Gisin Hugo Zbinden Toni Acin, Claudio Bareiro, Sylvain Fasel, J.-D.

Slides:



Advertisements
Similar presentations
Quantum Cryptography Post Tenebras Lux!
Advertisements

Use of Time as a Quantum Key By Caleb Parks and Dr. Khalil Dajani.
WP 3 WP 3 – Quantum Repeaters Časlav Brukner
Implementation of Practically Secure Quantum Bit Commitment Protocol Ariel Danan School of Physics Tel Aviv University September 2008.
Chromatic Dispersion Measurement methods  Pulse Delay Method (time-of-flight) ‏ IEC / ITU-T G650.1 EIA/TIA-455- FOTP-175-B  Phase Shift Method.
Modern Physics 5/10/11 Spring 2011 Ben Miller, Alexander DeCarli, Kevin Shaw.
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
GAP Optique 1 Quantum Communication  Quantum cryptography: a beautiful idea!  Quantum cryptography on a “black-board”  Quantum cryptography below lake.
Economic Stimulus : Valorization of Single Photon Detectors and Quantum Key Distribution Systems Hugo Zbinden Group of Applied Physics (GAP), UNIGE NCCR.
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.

The Promise of Quantum Information. SPS Detector X Detector Y Path A Path B Paths A & B going toward Y destructively interfere: Y never fires Quantum.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Optical Qubits Li Wang Physics 576 3/9/2007. Q.C. Criteria Scalability: OK Initialization to fiducial state: Easy Measurement: Problematic Long decoherence.
Single photon sources. Attenuated laser = Coherent state Laser Attenuator Approximate single photon source Mean number of photon per pulse.
Quantum Cryptography Marshall Roth March 9, 2007.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Quantum Cryptography Prafulla Basavaraja CS 265 – Spring 2005.
Quantum Cryptography December, 3 rd 2007 Philippe LABOUCHERE Annika BEHRENS.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
Experimental Quantum Teleportation Quantum systems for Information Technology Kambiz Behfar Phani Kumar.
Study and characterisation of polarisation entanglement JABIR M V Photonic sciences laboratory, PRL.
Two vertical-cavity surface-emitting lasers (VCSEL’s) are used at Alice, as sources of the two encoded states. Both outputs are then attenuated to achieve.
Gagan Deep Singh GTBIT (IT) August 29,2009.
Institute of Technical Physics Entanglement – Beamen – Quantum cryptography The weird quantum world Bernd Hüttner CPhys FInstP DLR Stuttgart.
Generation of quantum states of light by a semiconductor quantum dot.
Feynman Festival, Olomouc, June 2009 Antonio Acín N. Brunner, N. Gisin, Ll. Masanes, S. Massar, M. Navascués, S. Pironio, V. Scarani Quantum correlations.
- Quantum Storage of Photonic Entanglement in Nd:Y 2 SiO 5 - Towards a complete AFC quantum memory in Eu:Y 2 SiO 5 Imam Usmani, Christoph Clausen, Félix.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
QUANTUM TELEPORTATION
Security of practical quantum cryptography with heralded single photon sources Mikołaj Lasota 1, Rafał Demkowicz-Dobrzański 2, Konrad Banaszek 2 1 Nicolaus.
Quantum Cryptography Beyond the buzz Grégoire Ribordy CERN, May 3rd 2006.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
1 candidate: Vadim Makarov Quantum cryptography and quantum cryptanalysis Defence for the degree doktor ingeniør at the Norwegian University of Science.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Copyright 1998, S.D. Personick. All Rights Reserved. Telecommunications Networking I Lectures 12&13 Fiber Optics.
GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With.
Trondheim 2003 NTNU Vadim Makarov Lecture in "Fiberkomponenter" course, November 13, 2003 Quantum Cryptography Kvantekryptering.
PRESENTED BY MIDHUN.T - EC 3 - S 61 TOPIC – QUANTUM TELEPORTATION Presented by - MIDHUN T EC 3, S 6 ROLL NO. 20 Reg no
IIS 2004, CroatiaSeptember 22, 2004 Quantum Cryptography and Security of Information Systems 1 2
Practical Aspects of Quantum Coin Flipping Anna Pappa Presentation at ACAC 2012.
Information Processing by Single Particle Hybrid Entangled States Archan S. Majumdar S. N. Bose National Centre for Basic Sciences Kolkata, India Collaborators:
Trondheim 2002 NTNU Quantum Cryptography FoU NTNU Vadim Makarov and Dag R. Hjelme Institutt for fysikalsk elektronikk NTNU Norsk kryptoseminar,
Centre for Quantum Physics & Technology, Clarendon Laboratory, University of Oxford. Karl Surmacz (University of Oxford, UK) Efficient Unitary Quantum.
Quantum Dense coding and Quantum Teleportation
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
Copyright © 2006 Keio University Applications of an Entangled Quantum Internet Conference on Future Internet Technologies Seoul, Korea June 20, 2008 Rodney.
Quantum Cryptography Slides based in part on “A talk on quantum cryptography or how Alice outwits Eve,” by Samuel Lomonaco Jr. and “Quantum Computing”
Bell tests with Photons Henry Clausen. Outline:  Bell‘s theorem  Photon Bell Test by Aspect  Loopholes  Photon Bell Test by Weihs  Outlook Photon.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Efficiency of Multi-Qubit W states in Information Processing Atul Kumar IPQI-2014 IIT Jodhpur
- Quantum Storage of Photonic Entanglement in Nd:Y 2 SiO 5 - Towards a complete AFC quantum memory in Eu:Y 2 SiO 5 Imam Usmani, Christoph Clausen, Félix.
Fawaz S. K. Aldafeery. Introduction Quantum memories are important elements for quantum information processing applications such as quantum networks,
Applications of Quantum Cryptography – QKD CS551/851CRyptographyApplicationsBistro Mike McNett 6 April 2004 Paper: Chip Elliott, David Pearson, and Gregory.
Page 1 COMPSCI 290.2: Computer Security “Quantum Cryptography” including Quantum Communication Quantum Computing.
Quantum Cryptography Antonio Acín
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Spontaneous Parametric Down Conversion and The Biphoton
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Characterization and manipulation of frequency entangled qudits 1 Bänz Bessire Quantum Optics Lab – The Stefanov.
COMPSCI 290.2: Computer Security
Quantum Cryptography Quantum Teleportation
M. Stobińska1, F. Töppel2, P. Sekatski3,
Quantum Teleportation
Quantum Teleportation
Teleportation Between Distant Atoms
Spin Many quantum experiments are done with photon polarization instead of electron spin Here is the correspondence between the two And the measurement.
Experimental Quantum Teleportation*
Fig. 2 The experimental setup.
Presentation transcript:

GAP Optique Geneva University 1 Quantum Communications at telecom wavelengths Nicolas Gisin Hugo Zbinden Toni Acin, Claudio Bareiro, Sylvain Fasel, J.-D. Gautier, Ivan Marcikic, Hugues de Riedmatten, Valerio Scarani, André Stefanov, Damien Stucki, Sébastien Tanzilli, Robert Thew, Wolfgang Tittel, GAP-Optique, University of Geneva Q crypto over 67 km Time-bins:  high dimensions  robustness of non-maximally entangled qubits  Q teleportation at telecom

GAP Optique Geneva University 2 The plug&play setup Perfect interference (V  99%) without any adjustments, since: both pulses travel the same path in inverse order both pulses have exactly the same polarisation thanks to FM Alice Bob Drawback 1: Rayleigh backscattering Drawback 2: Trojan horse attacks

GAP Optique Geneva University 3 QC over 67 km, QBER  5% + aerial cable (in Ste Croix, Jura) !

GAP Optique Geneva University 4.Company established in 2001 –Spin-off from the University of Geneva.Products –Quantum Cryptography (optical fiber system) –Quantum Random Number Generator –Single-photon detector module (1.3  m and 1.55  m).Contact information web:

GAP Optique Geneva University 5 The qubit sphere and the time-bin qubit  qubit :  different properties : spin, polarization, time-bins  any qubit state can be created and measured in any basis variable coupler variable coupler 1 0   h AliceBob D 0 D 1 switch 1 0

GAP Optique Geneva University 6 entangled time-bin qubits  variable coupler B non-linear crystal 0 A 0 1 B 1 A  depending on coupling ratio and phase , maximally and non-maximally entangled states can be created

GAP Optique Geneva University 7 Arbitrary high dimensions Net visibility = 91 % ± 6 % Entanglement for a two-photon state of dimension at least : Quant-ph/ ; QIC 2002

GAP Optique Geneva University 8 Partially Entangled Time-Bin Qubits R.T.Thew et al. quant-ph/

GAP Optique Geneva University 9 Creation of a photonCreation of a qubitCreation of an entangled pair The Bell measurement teleportation setup Creation of any qubit to be teleported Analysis of the teleported qubit Coincidence electronics 3-fold 4-fold I. Marcikic et al., quant-ph/

GAP Optique Geneva University 10 Bell measurement

GAP Optique Geneva University 11 Teleportation of a time-bin qubit equatorial states 2 photons +laser clock (1310&1550nm)  3 photons+laser clock Raw visibility : V raw =56 ± 5 % Fidelity for equatorial states : =78 ± 3 % Net visibility : V net =83 % ± 8%

GAP Optique Geneva University 12 Teleportation of a time-bin qubit North&South poles 80.5 % ± 3 %

GAP Optique Geneva University 13 Long distance quantum teleportation Teleported qubit analyzed after 2 km of optical fiber and 55 m of physical distance (separate labs)

GAP Optique Geneva University 14 Results for long distance teleportation North & south poles Fidelity for north&south poles : = 88 ± 3% = 77 ± 3% 81.2 % ± 2.5 % Fidelity for Q teleportation over 2km = 80.5 ± 2.5 % Equatorial states Raw visibility : V raw =61 ± 5 % Fidelity for equatorial states :

GAP Optique Geneva University 15 Quantum teleportation as Q repeater (even without Q memory) At telecom, the QBER is dominated by detector noise: AliceBob t , D AliceBob , D  AliceBob , D  Bell , D 2 2  = 0.1 det. efficiency; D = 10 dark count;  = 0.25 dB/km attenuation -4 N. Gisin et al., Rev.Mod.Phys. 74, , 2002

GAP Optique Geneva University 16 Conclusion  qubits and entangled qubits can be realized using time-bins.  entangled qudits in arbitrary high dimension d can be realized.  partially entangled qubits are robust over 11 km.  Q teleportation with:  telecom wavelength  two different crystals (spatially separated sources)  from one wavelength (1300 nm) to another (1550 nm)  first time with time-bins (ie insensitive to polarization fluctuations)  over 2 km of fiber and 55 meters of physical distance  mean fidelity :  81% both in the lab and at a distance = the possibility to teleport the "ultimate structure" of an object from one place to another, without the object ever being anywhere in between