Section 2.5
Addition PropertyIf a=b, then a+c=b+c If 2=2, then 2+1=2+1 Subtraction PropertyIf a=b, then a-c=b-c If 2=2, then 2-1=2-1 Multiplication PropertyIf a=b, then ac=bc If 2=2, then 2(3)= 2(3) Division PropertyIf a=b and c≠0, then a/c=b/c If 2=2, then 2/4=2/4 Substitution PropertyIf a=b, then a can be substituted for b in any equation. Distributive PropertyIf a, b and c are real numbers, then a(b+c)= ab+ac If a=2, b=3 and c=x, then 2(3+x)= 6+2x
6x+2= -3x-16 +3x +3x 9x+2= -16 9x= -18 X=- 2 Given Addition Property Subtraction Property Division Property Solve 6x+2= -3x-16 for x. Write your reason for each step.
3x+8= -4x-34 +4x +4x 7x+8= -34 7x= -42 x= -6 Given Addition Property Subtraction Property Division Property Solve 3x+8= -4x-34 for x. Write your reason for each step.
4x+9= -3x+2 14x+3(7-x) =-1
Page Homework: page 111 Quiz
Reflexive PropertyFor real numbers, a=a. 2=2 For segment lengths, AB=AB. For any angle A, m ∠ A= m ∠ A Symmetric PropertyFor any real numbers a and b, if a=b then b=a. For segment lengths, if AB=CD then CD=AB For any angle, if m ∠ A=m ∠ B then m ∠ B=m ∠ A Transitive PropertyFor any real numbers a, b and c, if a=b and b=c, then a=c For segment lengths, if AB=CD and CD=EF, then AB=EF. For any angle, if m ∠ A=m ∠ B and m ∠ B=m ∠ C, then m ∠ A=m ∠ C.
m ∠ ABD=m ∠ CBE m ∠ ABD-m ∠ 2= m ∠ 1 m ∠ CBE-m ∠ 2= m ∠ 3 m ∠ ABD-m ∠ 2= m ∠ CBE-m ∠ 2 m ∠ 1= m ∠ 3 Given Angle Addition Postulate Substitution Property In the diagram, m ∠ ABD=m ∠ CBE. Show that m ∠ 1=m ∠ 3. A B C D E What do we know? What’s given to us? What do I need to do to get angle 1? What about angle 3? How are these angles related? How do I know they are equal?
If m ∠ 6= m ∠ 7, then m ∠ 7=m ∠ 6. Symmetric Property If JK=KL and KL=MN, then JK=MN. Transitive Property m ∠ 6=m ∠ 6. Reflexive Property If m ∠ A=m ∠ B and m ∠ B=m ∠ C, then m ∠ A=m ∠ C. Transitive Property If XY=WZ, then WZ=XY. Symmetric Property AB=AB Reflexive Property
Complete in your notebooks. Page , 16, 21-25, 28, 31, 33