DO NOW!!  What is the difference between an autotroph and a heterotroph? Why do plants need sunlight? What gases are exchanged between plants and animals?

Slides:



Advertisements
Similar presentations
Energy Flow Through Living Things: Photosynthesis & Cellular Respiration Chapter 8&9.
Advertisements

ENERGY, Photosynthesis, & Cellular Respiration
KEY CONCEPT All cells need chemical energy.
How is energy being obtained by the organisms in this picture?
Do Now How does our body make energy?
Chap 8- Photosynthesis Energy- the ability to do work
1 2 All About Energy 3 Formulas 4 Photosystems.
 Organisms must be able to transform energy from one form to another. ◦ Autotrophs —can transform energy from sunlight into chemical energy (can make.
DO NOW!!  What is the difference between an autotroph and a heterotroph?  Why do plants need sunlight?  What gases are exchanged between plants and.
ENERGY, Photosynthesis & Cellular Respiration
Chapter 8 Cellular Energy
1 2 All About Energy 3 Carbon Fixation 4 Photosystems.
Chapter 8 Cellular Energy 8.1 Cells and the Flow of Energy 8.2 Metabolic Reactions and Energy Transformations 8.3 Metabolic Pathways and Enzymes.
ATP, Photosynthesis, and Cellular Respiration: Energy in a Cell.
B 3.1 Photosynthesis TSWBAT Summarize the overall process by which photosynthesis converts solar energy into chemical energy and interpret the chemical.
Transformation of Energy
1 2 All About Energy 3 Carbon Fixation 4 Photosystems.
DO NOW What is the difference between an autotroph and a heterotroph? Why do plants need sunlight? What gases are exchanged between plants and animals?
1 Chapter 8 Cellular Energy 8.1 How Organisms Obtain Energy.
Photosynthesis [8.2] Cell Respiration [8.3] Fermentation [8.3]
Ch 7 Cellular respiration
Unit 3: Cells Processes (Photosynthesis & Respiration)
Chapter 8 Cellular Energy
Cell Respiration. Consumers/ Heterotrophs Autotrophs use sunlight to make ATP and Glucose Heterotrophs – get glucose from eating other organisms and using.
Chapter 8 Photosynthesis. 8-1 Energy and Life I. Autotrophs -make food using sunlight II. Heterotrophs - obtains energy from food they consume III. Energy.
Releasing Food Energy.
Cellular Respiration Cells Making Energy.
Cellular Respiration.
Cellular Respiration & Photosynthesis. Background Information Producers: are able to convert the sun’s energy into glucose through a process called photosynthesis.
Cellular Respiration.
Cellular Respiration.
DO NOW!!  What is the difference between an autotroph and a heterotroph?  Why do plants need sunlight?  What gases are exchanged between plants and.
 What is the difference between an autotroph and a heterotroph?  Why do plants need sunlight?  What gases are exchanged between plants and animals?
Chapter 8 Photosynthesis & Chapter 9 Respiration.
DO NOW Please hand in homework into the bin. Then Answer ◦ How do we see colors? ◦ Which color has the longest wavelength? The shortest? ◦ What pigments.
DO NOW!!  What is the difference between an autotroph and a heterotroph?  Why do plants need sunlight?  What gases are exchanged between plants and.
Cellular Respiration and Fermentation. Section 9.1 Cellular Respiration: An Overview Essential Question: How do organisms obtain energy? Guiding Question:
ENERGY, Photosynthesis & Cellular Respiration 1. Releasing Food Energy 2.
 Metabolism › Sum of all chemical changes/reactions in an organism  Photosynthesis › Conversion of light energy (E) into sugars (a form of chemical.
Autotrophs  Autotrophs are organisms that obtain energy by making their own food. (sugar- glucose) 8.1 How Organisms Obtain Energy Cellular Energy.
Cellular Respiration.
Do Now What is energy? How do we get energy?
Do Now Please go to your testing seats Pen or Pencil is fine
Cell Energy: Photosynthesis & Respiration
Cellular Energy.
Chemiosmosis CO2 H2O
How Cells Harvest Chemical Energy
Chapter 8 Cellular Energy
Cellular Respiration Chapter 7 Miss Colabelli Biology CPA.
WARM UP 10/15 What do you think is needed for photosynthesis to happen? What organelle aids in photosynthesis? What are the products of photosynthesis?
Introduction to PHOTOSYNTHESIS.
Part 3 Cellular Respiration
How Cells Harvest Chemical Energy – Cellular Respiration
Photosynthesis: Alternative Pathways
CELLULAR ENERGY Unit 4 Chapter 8.
DO NOW-Socrative (rm ) What is the difference between an autotroph and a heterotroph? Why do plants need sunlight? What gases are exchanged between.
Photosynthesis and Cellular Respiration Review
9.3 Getting Energy to Make ATP
DO NOW!!  What is the difference between an autotroph and a heterotroph? Why do plants need sunlight? What gases are exchanged between plants and animals?
Chapter 8 Cellular Energy.
Chapter 8 Cellular Energy.
Cellular respiration 2018.
Notes: Cellular Processes (Part 3) Cell Respiration
Cell Energy & Photosynthesis
Getting Energy to make ATP
Cell Energy & Photosynthesis
Cell Energy & Photosynthesis
Bell Work! What is the Equation for photosynthesis?
Photosynthesis & Cellular Respiration
Presentation transcript:

DO NOW!!  What is the difference between an autotroph and a heterotroph? Why do plants need sunlight? What gases are exchanged between plants and animals?

Overview Of Photosynthesis

Objectives To be able to list the inputs and outputs of photosynthesis. To be able to identify the structures in a chloroplast. To be able to summarize light- dependent reactions.

Photosynthesis Process of converting light energy to chemical energy!! Used by autotrophs to produce food All of our energy starts as light energy! Plants use sunlight to make food animals eat plants other animals eat those animals

Photosynthetic Organisms Go through Photosynthesis to produce GLUCOSE… Autotrophs “Producers” in the food web Consist of plants, protists, cyanobacteria

Photosynthesis: The Chemical Equation

Overview of Phases 1) Light dependent Light energy is absorbed and converted into chemical energy in the form of ATP and NADPH. (also produces oxygen as byproduct!) 2) Light independent (Calvin Cycle) CO2 ATP and NADPH (from light dependent) are used to make glucose. *Glucose is the basic building block for more complex sugars such as starch.*

Do Now!!  What are the two phases of photosynthesis? What are the inputs and outputs of each phase? What is the chemical equation for photosynthesis?

Objectives To go over the steps of light dependent reactions To understand the inputs and outputs of light dependent reactions To label a light reactions diagram

Phase Overview Glucose

The Chloroplast

Structures within a chloroplast Thylakoids: flattened sac-like membranes arranged in stacks (stacks are called grana). Light-dependent reactions take place here. Electron transport occurs in the thylakoid membrane Stroma: Fluid filled space outside the grana. Light-independent reactions take place here.

Do Now!!  What is the equation for photosynthesis? Where do light dependent reactions take place? Independent? What are the inputs of light dependent reactions? The outputs?

Objectives To go over the steps of light dependent reactions To understand the inputs and outputs of light dependent reactions To label a light reactions diagram

Diagram! Please grab 6 different colors!! Lets label our light dependent reactions diagram.

Light Dependent Reactions Step 1: Light energy reaches photosytem II, exciting electrons and causing water molecule to split. - H+ is released, stays in thylakoid space. - O2 is given off as a byproduct. - Electron released into electron transport system

Light Dependent Reactions Step 2: Excited electrons move from photosystem II through the membrane As they move, protons (H+) are pumped into thylakoid space

Light Dependent Reaction Step 3: At photosystem I, electrons are re-energized and transferred to ferrodoxin (helper protein): NADPH (energy storage molecule) is formed from NADP+ (we need this for the Calvin Cycle!)

Light Dependent Reactions Step 5: Hydrogen ions move through the ATP Synthase because of the concentration gradient, creating ATP from ADP. (Chemiosmosis)

Do Now!!  What goes into a light dependent reaction? What is the goal of a light dependent reaction? What is given off as a byproduct? What is the name of the protein that converts NADP+ to NADPH?

Objectives To review light dependent reactions To introduce light independent reactions by completing a Calvin Cycle activity

Think-pair-share Please work on the worksheet in front of you! Try it by yourself, then you may work with a partner.

Light Dependent Reactions http://www.science.smith.edu/departments/Biology/Bio231/ltrxn.html https://www.youtube.com/watch?v=joZ1EsA5_NY

Do Now!!  Please take out the light dependent worksheet from yesterday!

Objectives To identify the stages of light independent reactions To identify alternative pathways To define C4 and CAM plants

The Calvin Cycle Takes place in the STROMA Uses NADPH and ATP from Phase I (light dependent reactions) Needs CO2!!! Produces GLUCOSE!!

Calvin Cycle Functions like a sugar factory within a chloroplast Regenerates the starting material with each turn Calvin Cycle

Calvin Cycle Inputs ATP NADPH CO2 Outputs Glucose

Calvin Cycle

Chemiosmosis Mechanism in which ATP is produced as a result from the flow of electrons down a concentration gradient. Ex: Light reactions (H+ ions and ATP synthase)

Alternative Pathways Light and Water can limit the amount of photosynthesis a plant can perform. Some plants develop alternate pathways to maximize energy conservation. Ex: CAM and C4 plants.

C4 Plants These plants minimize water lost Turn CO2 into a 4 carbon molecule instead of a 3 carbon molecule Keeps stomata (plant cell pores) closed during hot days Ex. Corn and Sugar Cane

CAM Plants Occurs in water-conserving plants that live in deserts and other arid environments Stomata ALWAYS closed during the day CO2 only enters leaves at night, turns into a “storage molecule” until daytime Ex. Orchids, cacti, pineapples

Do Now!!  (P. 2 & P.6) How does our body make energy? What are the outputs of photosynthesis? What do you think the outputs of cellular respiration are?

Objectives (Period 1 & 2) To compare and contrast photosynthesis and cellular respiration To identify the inputs and outputs of cellular respiration To define NADH and FADH2 To complete a cellular respiration exercise lab!

Objectives (Period 6) To compare and contrast photosynthesis and cellular respiration To identify the inputs and outputs of cellular respiration To define NADH and FADH2

So, what is cellular respiration?

How does cellular respiration compare to photosynthesis? Cell Respiration CO2 + H2O + light O2 + C6H12O6 CO2 + H2O + ATP CO2 + H2O + Light  O2 + C6H12O6  Inputs Outputs Chemical Formula

All cells require energy to do work Aerobic = NEEDS OXYGEN!! In aerobic respiration we use oxygen to help release the energy stored in bonds. Anaerobic = does NOT require oxygen

NADH and FADH2 FADH2 (Riboflavin) FADH2 FAD + 2 H+ + 2e- B2 Vitamin Accepts 2 electrons NADH (Niacin) NADH NAD+ + H+ + 2e- B3 Vitamin *These are electron carriers!

Do now!!  What is the chemical equation for cellular respiration? Why are NADH and FADH2 important? What is the overall goal of cellular respiration?

Objectives To discuss glycolysis and its importance To identify the inputs and outputs of glycolysis To complete a cellular respiration POGIL activity

Let’s try some sample math problems before we begin Spongebob is selling Krabby patties. He paid 2 dollars per Krabby patty and is selling each at 7 dollars. How much NET profit is Spongebob making if he sells 1 Krabby patty? 10 Krabby patties?

Steps of Cellular Respiration Step 1: Glycolysis (anaerobic, cytoplasm) Step 2: Krebs Cycle (aerobic, mitochondrial matrix) Step 3: Electron Transport Chain (aerobic, mitochondrial membrane)

Lets color code Please take out your diagrams and grab 2 colored pencils!

Glycolysis  

Glycolysis (continued) 4. 4 molecules of ADP are used to make 4 ATP, and G3P compounds are converted into 2 molecules of Pyruvate. 5. The net total being 2 ATP molecules http://highered.mcgraw- hill.com/sites/0072507470/student_view0/ch apter25/animation__how_glycolysis_works.ht ml

Do Now!!  If there was a net gain of 28 ATP in glycolysis, how many glucose molecules were consumed? If 18 NADH are produced, how many ATP are gained? How many glucose molecules are consumed? How does ATP supply energy for our cells?

Do Now!!  (P. 2) If there was a net gain of 14 ATP in glycolysis, how many glucose molecules were consumed? If 24 ATP are produced, how many NADH are gained? How many glucose molecules are consumed? List the steps of cellular respiration and identify where they take place.

Objectives (P.2) To discuss the Kreb’s cycle and its importance To identify the inputs and outputs of the Kreb’s cycle

Objectives (P.1 & P.6) To discuss the Kreb’s cycle and its importance To identify the inputs and outputs of the Kreb’s cycle To complete cellular respiration POGIL activity

The Kreb’s Cycle Please take out your diagrams and grab 2 colors!

The Kreb’s Cycle Pyruvate first reacts with coenzyme A (CoA), forms acetyl CoA. CO2 is released and NAD+ converts to NADH. Acetyl CoA combines with 4 carbon compound, forms 6 carbon citric acid.

The Kreb’s Cycle (continued) Citric acid broken down, releasing CO2 and forming ATP, NADH and FADH2 4 carbon compound regenerated, cycle continues Total ATP produced: 2 (cycles twice, once for each pyruvate!)

Do Now!  (P. 1) Where does the Kreb’s cycle take place? Why are there 2 total ATP produced instead of 1? What happens to the NADH and FADH2 produced? If 6 FADH2 are produced in the Kreb’s cycle, how many glucose molecules did you start with? http://highered.mheducation.com/sites/0072507470/student_view0/ chapter25/animation__how_the_krebs_cycle_works__quiz_1_.html

Do Now!!  (P. 2) Where does the Kreb’s cycle take place? What happens to the NADH and FADH2 produced? If 32 FADH2 are produced in the Kreb’s cycle, how many glucose molecules did you start with? http://highered.mheducation.com/sites/0072507470/student_view0/chapte r25/animation__how_the_krebs_cycle_works__quiz_1_.html

Objectives (P.2) To identify the inputs and outputs of the electron transport chain. To complete a cellular respiration POGIL activity

Electron Transport Chain Please take out your diagrams and grab 2 colors!!

Electron Transport Chain NADH and FADH2 release electrons, converted into NAD+ and FAD (H+ released into the mitochondrial matrix). H+ ions are pumped across inner mitochondrial membrane as electrons move along membrane (with the help of proteins).

Electron Transport Chain (continued) 3. Oxygen is final electron acceptor (protons and electrons combine with oxygen to form water). 4. H+ ions then diffuse back into matrix through ATP synthase (chemiosmosis), producing 32 ATP. Total ATP produced for one molecule of glucose = 32 ATP molecules

Do Now!!  (P. 1) Where does the electron transport chain take place? How many ATP are produced? How many total molecules of ATP are produced for one molecule of glucose? http://highered.mheducation.com/sites/0072507470/stud ent_view0/chapter25/animation__electron_transport_syst em_and_atp_synthesis__quiz_1_.html

Objectives To define anaerobic respiration. To compare and contrast alcohol fermentation and lactic acid fermentation.

Stand up! Move your arms up and down for one minute! Do not stop until the time is up! What is happening in your arms?

Anaerobic Respiration Making ATP without oxygen (fermentation) Problems: Only 2 net ATP per glucose molecule Limited amount of NAD+ Yeast, People, Bacteria, Fungus Used to make beer, wine, and bread

2 Main Types of Fermentation 1. Lactic Acid Fermentation Pyruvate from glycolysis converted to lactic acid Lactic acid is associated with the “burn” associated with heavy exercise If too much lactic acid builds up, your muscles feel sore and may give out

Lactic Acid Fermentation Inputs: Glucose, 2ADP Outputs: 2ATP, 2 lactic acid Ex: Bacteria that help in making yogurt, cheese and sour cream. Human muscle cells when out of oxygen.

Lactic Acid Fermentation Physical conditioning allows your body to adapt to increased activity: The body can increase its ability to deliver oxygen to muscles Long-distance runners wait until the final sprint to exceed their aerobic capacity

2 Main Types of Fermentation 2. Alcohol Fermentation In yeast and some bacteria Pyruvate is converted to ethyl alcohol and carbon dioxide Ex: yeast used for baking bread and making wine/beer https://www.youtube.com/wat ch?v=i1w09QKf9GU

Alcohol Fermentation Inputs: Glucose, 2ADP Outputs: 2ATP, 2 ethanol, 2 CO2 NAD+ gets regenerated

Why don’t you get drunk off bread? Take a minute and pair up with the person sitting NEXT to you and discuss this question.

Aerobic vs. Anaerobic Respiration Cytoplasm Lactic acid or CO2/ethanol

Do Now!!  What happens when we don’t get enough oxygen? What does our body do?