Size effect of tin oxide nanoparticles on high capacity lithium battery a node materials Yi-Chun Chen a, Jin-Ming Chen b, Yue-Hao Huang b, Yu-Run Lee.

Slides:



Advertisements
Similar presentations
MEMS Thermal & Fluid Control Lab. 國立台灣大學機械工程系微機械熱流控制實驗室 Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan Department of Mechanical.
Advertisements

TEM 試片的準備技術 授課老師:王聖璋 博士 班級:車輛四乙 學號: 學生:陳維翰 報告日期:2013年12月27日.
1 Photocatalytic activity of SBA-15 silica-supported titania photocatalysts 王聖璋 Sheng-Chang Wang 南台科技大學 Southern Taiwan University Institute of Nanotechnology,
J Fusion Energ (2011) 30:433–436 DOI /s OR IGINAL RESEARCH Filament Temperature Dependence of the Nano-size MgO Particles Prepared.
Chemical Nanoparticle Deposition of Oxide Nanostructured Thin Films 6. Conclusions 2. Experimental Setup 1. Abstract We have developed a novel approach.
Department of Chemical Engineering University of South Carolina by Hansung Kim and Branko N. Popov Department of Chemical Engineering Center for Electrochemical.
1 94 學年度碩士班新生座談 擬定 修正. 2 李之中 Chi-Chung Lee Assistant professor Department of Information Management, Chung Hwa University Office.
High Capacity Graphite Anodes for Li-Ion battery applications using Tin microencapsulation Basker Veeraraghavan, Anand Durairajan, Bala Haran Ralph White.
數位家庭教學推動聯盟中心 數位家庭軟體工程 第一年教材編列進度報告 國立台灣海洋大學資訊工程學系 梁德容.
SONOCHEMICAL SYNTHESIS OF NANO MANGANESE DIOXIDE PARTICLES FOR BATTERY APPLICATIONS K. Saminathan, S. R. Srither, K. KathiKeyan, S. Praveen and V. Rajendran.
Journal Club Shu Jinbo Direct Synthesis of Self-Assembled Ferrite/Carbon Hybrid Nanosheets for High Performance Lithium-Ion Battery Anodes.
Simple Designed Synthesis of Graphene Based Nanocomposites for Energy Related Applications Yuanzhe Piao Graduate school of Convergence Science and Technology,
Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Heon-Young Lee a, Seung-Joo Lee b, Sung-Man Lee a a Department of Advanced.
Synthesis of SnO nanocrystals with shape control via ligands interaction and limited ligand protection Kangkang Mena , Jiajia Ninga ,b .Quanqin Daic,
Zinc oxide films prepared by sol-gel spin coating 指導老師:林克默 學 生:吳仕賢 報告日期: Y. Natsume, H. Sakata, Thin Solid Films 372 (2000) 30. Department of.
Fig. 1 The heating ways for DSC (a) non-isothermal; (b) isothermal analyses (a)(b) Study of Thermal Properties in Zr-Al-Cu-Ni Amorphous Alloy by Adding.
Improvement of electrochemical performance for Li 3 V 2 (PO 4 ) 3 /C electrode using LiCoO 2 as an additive 指导教师:唐致远教授 学生:王利娟.
Department of Electrical Engineering Southern Taiwan University of Science and Technology Robot and Servo Drive Lab. 學生 : 蔡景棠 指導教授 : 王明賢 2015/10/13 A Driver.
Li-Mn-O Thin Film Cathode prepared at Room Temperature Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Jeong-Kyu Lim a, Hyeon-Young.
班級:碩研奈米一甲 學號:MA31V206 姓名:黃宗偉 授課教師:戴子堯 教授
Nano Functional Ceramic Lab.. 前言 實驗步驟 結果與討論 結論 未來工作 Outline 2.
Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.
Keh-moh Lin ∗, Paijay Tsai Department of Mechanical Engineering, Southern Taiwan University of Technology, No. 1, Nantai St., Yung-Kang City, Tainan 710,
2. Experimental 4. Conclusions Nano crystalline zinc oxide can be prepared by a simple and cost-effective sol–gel process using aromatic acid ( salicylic.
1 Low Operation Voltage of Nitride-Based LEDs with Al-Doped ZnO Transparent Contact Layer 授課老師: 李明倫 指導教授: 管鴻 學生:蘇奕昕 C. H. Kuo, a,z C. L. Yeh, a P. H. Chen,
Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Cycle performance of Si-based Thin Film Anodes for Li-ion Batteries Kwan-Soo.
1 Nano-aluminum-induced crystallization of amorphous silicon 指導教授:管 鴻 學 生:郭豐榮 學 號: M98L0213.
指導教授:王聖璋 博士 (Pro.S-C Wang) 學生 : 黃伯嘉 (Bo-Jia Huang) 2015/11/11 Temperature effects on the growth of SnS nanosheet structure using thermal decomposition.
Nanotechnology and the Lithium-ion Battery. Batteries in General –Electrolyte –Electrodes –Anode –Cathode Nanotechnology and the Lithium-ion Battery.
Directional Etching Formation of Single-Crystalline Branched Nanostructures: A Case of Six-Horn-like Manganese Oxide Xi-Guang Han, Ming-Shang Jin, Qin.
MnO Octahedral Nanocrystals and Core- Shell Composites: Synthesis,Characterization, and Electrocatalytic Properties Sangaraju Shanmugam and Aharon.
指導老師 : 陳澄河 教授 研究生 :甘宜婷 報告日期 :
指導教授:王聖璋 博士 (Pro.S-C Wang) 學生 : 黃伯嘉 (Bo-Jia Huang) 2015/11/22 Temperature effects on the growth of SnS nanosheet structure using thermal decomposition.
指導老師:林克默 博士 學 生:楊顯奕 報告日期: Outline 1. Introduction 2. Experiments 3. Spectroscopic ellipsometry 4. Results and discussion 5. Conclusion.
The Detection of Glucose for the Carbon Paste Electrode Modified with Ruthenium Hexacyanoferrate Kuo-Hsiang Liao ( 廖國翔 ), Chih-Ying Wu ( 巫致穎 ), Hau Lin.
指導教授:王聖璋 博士 報告人 : 林恩賢 2015/11/28 Nano Functional Ceramic Lab. No.8.
Synthesis and optical properties of CuS nanowires fabricated by electrodeposition with anodic alumina membrane Chien Wu a, Jen-Bin Shi b, Chih-Jung Chen.
F127 界面活性劑製備單晶金紅石相二氧化鈦奈米棒 SINGLE CRYSTALLINE RUTILE TIO2 NANORODS SYNTHESIZED BY F127 SURFACTANT 指導教授:王聖璋 副教授 研究生:馮皇欽 2009/3/26.
指導教授 : 王聖璋 博士 演 講 者 : 林恩賢 日 期 :2011/06/08 1. Outline Introduction Experimental section Results and discussion Conclusions Future work 2.
日 期: 指導老師:林克默 學 生:陳冠廷. Outline 1.Introduction 2.Experimental 3. Results and discussion 4. Conclusions.
Reporter : Chun-Yang Hsieh Advisor : Wen-Chang Wu Date : 2014/3/26 1.
Preparation of crack-free Al 2 O 3 washcoat on W-Re metallic wire by electrophoretic deposition 指導教授:王聖璋 副教授 報告人:黃俊嘉.
Synthesis, Characterization, and Magnetic Properties of Uniform-sized MnO Nanospheres and Nanorods Jongnam Park,† Eunae Kang,† Che Jin Bae,‡ Je-Geun Park,‡
Takashi Fuyuki, Hayato Kondo, Yasue Kaji, Tsutomu Yamazaki, Yu Takahashi, Yukiharu Uraoka Graduate School of Materials Science, Nara Institute of Science.
Low resistance indium tin oxide films on large scale glass substrate 學生 : 葉榮陞 指導老師 : 林克默.
Reporter:Wen-Cheng Lin Teacher:Wei-Tung Liao. Outline Introduction Materials Experimental Results and discussion Conclusions.
1 94 學年度碩士班新生座談. 2 李之中 Chi-Chung Lee Assistant professor Department of Information Management, Chung Hwa University Office : M302-1 Phone : 03- coming.
Architecture and algorithms for an IEEE based multi-channel wireless mesh network 指導教授:許子衡 老師 學生:王志嘉.
授課老師:戴子堯 教授 碩研機械一甲 -MA 胡淳翔. 前言 2 As one type of heat-treatable aluminum alloys, Al–Cu cast alloys arewidely used in transportation, aerospace and.
The Inferences of ZnO Additions for LKNNT Lead-Free Piezoelectric Ceramics CHIEN-MIN CHENG 1, CHING-HSING PEI 1, MEI-LI CHEN 2, *, KAI-HUANG CHEN 3, *
The pH on the Detection of Hydrogen Peroxide for Electrode Modified with Chromium Hexacyanoferrate Chen-Hsun Hu ( 胡真熏 ), Ting-Li Lin ( 林庭立 ), Hau Lin (
The Detection of Hydrogen Peroxide and Glucose for the Electrode Modified with Ruthenium Hexacyanoferrate Kuo-Hsiang Liao ( 廖國翔 ), Chung-Min Lien ( 連崇閔.
National Tsing Hua University Summer Internship Opportunity.
Production of non-porous and porous Cu-Sn/C Multilayered system via Electron Beam Evaporation Techniques B.D. Polat 1, N. Sezgin 1, K.Kazmanlı 1, Ö. Keleş.
John Mortimer, Fan Xia and Junjie Niu
International Conference on Electron Microscopy
A High-Performance Li-Al Battery For Electric Vehicles
Fig. 2. SEM images of: a) sample A, b) sample B.
INTRODUCTION & OBJECTIVE
  Syed Kamran Sami1, 2, Jung-Yong Seo1,Tae-Il Kim1, and Chan-Hwa Chung1*
Energy Materials Laboratory
Jeff Becker Mingwei Shang Junjie Niu
A High-Performance Li-Al Battery For Electric Vehicles
結果與討論 (Results and Discussion Cont’d) 結果與討論 (Results and Discussion)
Nanotechnology تقانة الصغائر.
He-Qun Dai1,2, Hao Xu1,2, Yong-Ning Zhou2, Fang Lu1, and Zheng-Wen Fu
Sujong Chae, Minseong Ko, Kyungho Kim, Kihong Ahn, Jaephil Cho  Joule 
Interphase Engineering Enabled All-Ceramic Lithium Battery
Sujong Chae, Minseong Ko, Kyungho Kim, Kihong Ahn, Jaephil Cho  Joule 
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
Presentation transcript:

Size effect of tin oxide nanoparticles on high capacity lithium battery a node materials Yi-Chun Chen a, Jin-Ming Chen b, Yue-Hao Huang b, Yu-Run Lee b, Han C. Shih a,c,* a Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan b Materials and Chemical Engineering, Industrial Technology Research Institute, Chutung 310, Taiwan c Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan Available online 1 September 2007 Surface & Coatings Technology 202 (2007) 1313–1318 報告學生: 蔣昆璋 指導教授: 王聖璋 老師

目 錄 前言 實驗流程 結果與討論 結論 未來工作

前言 Lithium ion batteries have a high energy density and are widely used in electrical products, such as mobile phones and notebook computers. Graphite and other carbonaceous materials are the most used as commercial anodes for the lithium ion batteries. Nanotechnology has been applied in the anode materials as the nanocomposite materials. Carbonaceous materials are used as matrices to reduce the volume expansion effect and the nanotin composites are added to increase the capacity . The forms of nano-tin composites include Sn, SnO and SnO2. Tin is more applied as an anode material than the silicon because it has a low active voltage which is approximately 0.3 V and that of silicon exceeds 0.5 V. This work employs tin oxide nanoparticles as the active material, which was synthesized by the sol–gel method. Although the preparation of tin oxide nanoparticles by sol–gel method has been reported recently , this work develops another process for synthesizing the tin oxide nanoparticles (∼20 nm) which disperse uniformly on the graphite surface. Electrical measurements were used to analyze the nano-SnO2/graphite. Though tin is widely used as an active material in the anode, only few works are relevant to the study of the real utilization of tin as active materials. This work therefore discusses the utilization of tin as an anode material.

Electrochemical tests 實 驗 流 程 SnCl2·2H2O Ethanol 28 ml HCl 0.9 ml Stirring 24H >24H DI water 175 ml 2H Graphite powders X-rd SEM TGA Electrochemical tests Nano SnO2/graphite

Electrochemical tests graphite SnO2 powders Mixing 1:7 2H Electrochemical tests Micro-SnO2/graphie

結 果 與 討 論 Graphite JCPDS 41-1487 SnO2 JCPDS 41-1445 Fig. 1. X-ray diffraction pattern of the SnO2/graphite structure.

Fig. 2. SEM images of the SnO2/graphite at the magnification of (a) ×10,000, (b) ×50,000, and (c) ×150,000 and SEM images of the pure graphite at the magnification of (d) ×10,000 and (e) ×50,000

Fig. 3. TGA analysis of the nano-SnO2/graphite

Fig. 4. Charge/discharge curves of (a) graphite, (b) nano-SnO2/graphite, and (c) micro-SnO2/graphite

Fig. 5. The capacity varying with the cycle number of the graphite, nano-SnO2/ graphite and micro-SnO2/graphite.

結 論 The sol–gel method is effective in creating nano-sized SnO2 particles (~20 nm). (2) Adding SnO2 to pure graphite markedly improves the specific capacity, which nevertheless, fades and is related to the size and distribution of the particles. (3) Nano-sized SnO2 particles increase the utilization of Sn and clearly increase the cyclability over those of micro-SnO2. (4) Sn-based materials are therefore promising for use in anode and the sol–gel method is effective in reducing the particle size. (5) Further studies of the nanocompositions are required leading to the development of commercial anodes in the future.

未 來 工 作 Paper review 實驗進度