Copyright © 2010 Pearson Education, Inc. Chapter 22 Comparing Two Proportions.

Slides:



Advertisements
Similar presentations
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 22 Comparing Two Proportions.
Advertisements

Comparing Two Proportions
Objective: To test claims about inferences for two proportions, under specific conditions Chapter 22.
1-1 Copyright © 2015, 2010, 2007 Pearson Education, Inc. Chapter 21, Slide 1 Chapter 21 Comparing Two Proportions.
Comparing Two Proportions
Confidence Interval and Hypothesis Testing for:
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 19 Confidence Intervals for Proportions.
1-1 Copyright © 2015, 2010, 2007 Pearson Education, Inc. Chapter 18, Slide 1 Chapter 18 Confidence Intervals for Proportions.
Copyright © 2010 Pearson Education, Inc. Chapter 19 Confidence Intervals for Proportions.
Copyright © 2010 Pearson Education, Inc. Chapter 24 Comparing Means.
Lecture Slides Elementary Statistics Twelfth Edition
Chapter 19: Confidence Intervals for Proportions
Ch 10 Comparing Two Proportions Target Goal: I can determine the significance of a two sample proportion. 10.1b h.w: pg 623: 15, 17, 21, 23.
Statistics Pooled Examples.
1-1 Copyright © 2015, 2010, 2007 Pearson Education, Inc. Chapter 23, Slide 1 Chapter 23 Comparing Means.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 25 Paired Samples and Blocks.
+ Section 10.1 Comparing Two Proportions After this section, you should be able to… DETERMINE whether the conditions for performing inference are met.
Comparing Two Proportions
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 24 Comparing Means.
Section Inference for Experiments Objectives: 1.To understand how randomization differs in surveys and experiments when comparing two populations.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 24 Comparing Means.
Chapter 22: Comparing Two Proportions
Chapter 10: Comparing Two Populations or Groups
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
AP Statistics Chapter 22 Notes “Comparing Two Proportions”
Chapter 22: Comparing Two Proportions. Yet Another Standard Deviation (YASD) Standard deviation of the sampling distribution The variance of the sum or.
Copyright © 2010 Pearson Education, Inc. Slide Beware: Lots of hidden slides!
Copyright © 2010 Pearson Education, Inc. Chapter 22 Comparing Two Proportions.
Chapter 20 Testing Hypothesis about proportions
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 22 Comparing Two Proportions.
Copyright © 2010 Pearson Education, Inc. Chapter 19 Confidence Intervals for Proportions.
AP Statistics Chapter 24 Comparing Means.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 24 Comparing Means.
Copyright © 2009 Pearson Education, Inc. Chapter 19 Confidence Intervals for Proportions.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 19 Confidence Intervals for Proportions.
Comparing Means Chapter 24. Plot the Data The natural display for comparing two groups is boxplots of the data for the two groups, placed side-by-side.
Two-Sample Proportions Inference. Sampling Distributions for the difference in proportions When tossing pennies, the probability of the coin landing.
Chapter 22 Comparing Two Proportions.  Comparisons between two percentages are much more common than questions about isolated percentages.  We often.
Chapter 22 Comparing two proportions Math2200. Are men more intelligent? Gallup poll A random sample of 520 women and 506 men 28% of the men thought men.
Sullivan – Fundamentals of Statistics – 2 nd Edition – Chapter 11 Section 3 – Slide 1 of 27 Chapter 11 Section 3 Inference about Two Population Proportions.
Chapter 22 Comparing Two Proportions. Comparing 2 Proportions How do the two groups differ? Did a treatment work better than the placebo control? Are.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 19 Confidence Intervals for Proportions.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide Next Time: Make sure to cover only pooling in TI-84 and note.
Chapter 22: Comparing Two Proportions AP Statistics.
1-1 Copyright © 2015, 2010, 2007 Pearson Education, Inc. Chapter 23, Slide 1 Chapter 24 Comparing Means.
Copyright © 2010 Pearson Education, Inc. Slide
AP STATISTICS COMPARING TWO PROPORTIONS Chapter 22.
10.1 Comparing Two Proportions Objectives SWBAT: DESCRIBE the shape, center, and spread of the sampling distribution of the difference of two sample proportions.
Statistics 24 Comparing Means. Plot the Data The natural display for comparing two groups is boxplots of the data for the two groups, placed side-by-side.
Copyright © 2009 Pearson Education, Inc. Chapter 22 Comparing Two Proportions.
Statistics 22 Comparing Two Proportions. Comparisons between two percentages are much more common than questions about isolated percentages. And they.
AP Statistics Chapter 24 Comparing Means. Objectives: Two-sample t methods Two-Sample t Interval for the Difference Between Means Two-Sample t Test for.
Copyright © 2009 Pearson Education, Inc. Chapter 19 Confidence Intervals for Proportions.
Comparing Two Proportions Chapter 21. In a two-sample problem, we want to compare two populations or the responses to two treatments based on two independent.
Chapter 11 Lesson 11.3b Comparing Two Populations or Treatments 11.3: Inferences Concerning the Difference Between 2 Population or Treatment Proportions.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Confidence Intervals for Proportions
Comparing Two Proportions
Comparing Two Proportions
Chapter 23 Comparing Means.
AP Statistics Comparing Two Proportions
Comparing Two Proportions
Confidence Intervals for Proportions
Confidence Intervals for Proportions
Comparing Two Proportions
Hypothesis Testing Two Proportions
Comparing Two Proportions
Chapter 24 Comparing Means Copyright © 2009 Pearson Education, Inc.
Presentation transcript:

Copyright © 2010 Pearson Education, Inc. Chapter 22 Comparing Two Proportions

Copyright © 2010 Pearson Education, Inc. Slide Comparing Two Proportions Comparisons between two percentages are much more common than questions about isolated percentages. And they are more interesting. We often want to know how two groups differ, whether a treatment is better than a placebo control, or whether this year’s results are better than last year’s.

Copyright © 2010 Pearson Education, Inc. A county health department tries an experiment using several hundred volunteers who were planning to use a nicotine patch to help quit smoking. The subjects were split into two groups. Group 1 were given the patch and attended a weekly discussion support group, Group 2 just got the patch. After six months, 46 of 143 people in Group 1 and 30 of 151 people in Group 2 has successfully stopped smoking. Do these results suggest that such support groups could be an effective way to help people stop smoking? Slide

Copyright © 2010 Pearson Education, Inc. Slide Another Ruler In order to examine the difference between two proportions, we need another ruler—the standard deviation of the sampling distribution model for the difference between two proportions. Recall that standard deviations don’t add, but variances do. In fact, the variance of the sum or difference of two independent random quantities is the sum of their individual variances.

Copyright © 2010 Pearson Education, Inc. Slide The Standard Deviation of the Difference Between Two Proportions Proportions observed in independent random samples are independent. Thus, we can add their variances. So… The standard deviation of the difference between two sample proportions is Thus, the standard error is

Copyright © 2010 Pearson Education, Inc. A survey of 886 randomly selected teenagers (12- 17) found that more than half of them have online profiles. There appear to be differences between boys and girls in their online behavior. Among teens aged 15-17, 57% of the 248 boys had online profiles, compared to 70% of the 256 girls. If we want to estimate how large the difference truly is, first calculate the standard error of the sample proportions. Slide

Copyright © 2010 Pearson Education, Inc. Slide Assumptions and Conditions Independence Assumptions: Randomization Condition: The data in each group should be drawn independently and at random from a homogeneous population or generated by a randomized comparative experiment. The 10% Condition: If the data are sampled without replacement, the sample should not exceed 10% of the population. Independent Groups Assumption: The two groups we’re comparing must be independent of each other.

Copyright © 2010 Pearson Education, Inc. Slide Assumptions and Conditions (cont.) Sample Size Condition: Each of the groups must be big enough… Success/Failure Condition: Both groups are big enough that at least 10 successes and at least 10 failures have been observed in each.

Copyright © 2010 Pearson Education, Inc. Among a random sample of teens aged 15-17, 57% of the 248 boys had online profiles, compared to 70% of the 256 girls. Can we use these results to make inferences about all year olds? What are the assumptions and conditions? Slide

Copyright © 2010 Pearson Education, Inc. Slide The Sampling Distribution We already know that for large enough samples, each of our proportions has an approximately Normal sampling distribution. The same is true of their difference.

Copyright © 2010 Pearson Education, Inc. Slide The Sampling Distribution (cont.) Provided that the sampled values are independent, the samples are independent, and the samples sizes are large enough, the sampling distribution of is modeled by a Normal model with Mean: Standard deviation:

Copyright © 2010 Pearson Education, Inc. Slide Two-Proportion z-Interval When the conditions are met, we are ready to find the confidence interval for the difference of two proportions: The confidence interval is where The critical value z* depends on the particular confidence level, C, that you specify.

Copyright © 2010 Pearson Education, Inc. Slide

Copyright © 2010 Pearson Education, Inc. A Gallup poll asked whether the attribute “intelligent” applied to men in general. The poll revealed that 28% of 506 men thought it did, but only 14% of 250 women agreed. We want to estimate the true size of the gender gap by creating a 95% confidence interval. Slide

Copyright © 2010 Pearson Education, Inc. A charity looking for donations runs a test to see if they will be more effective soliciting donations by or regular mail. They send the same letter to two different random groups of people and received donations 26% of the time from the group that received an , and 15% from those who received the request by regular mail. A 90% confidence interval estimated the difference in donation rates to be 11% ± 7% Interpret this confidence interval in context. Based on this confidence interval, what conclusion would we reach if we tested the hypothesis that there is no difference in the response rates to the two methods? Slide

Copyright © 2010 Pearson Education, Inc. Slide Everyone into the Pool The typical hypothesis test for the difference in two proportions is the one of no difference. In symbols, H 0 : p 1 – p 2 = 0. Since we are hypothesizing that there is no difference between the two proportions, that means that the standard deviations for each proportion are the same. Since this is the case, we combine (pool) the counts to get one overall proportion.

Copyright © 2010 Pearson Education, Inc. Slide Everyone into the Pool (cont.) The pooled proportion is where and If the numbers of successes are not whole numbers, round them first. (This is the only time you should round values in the middle of a calculation.)

Copyright © 2010 Pearson Education, Inc. Slide Everyone into the Pool (cont.) We then put this pooled value into the formula, substituting it for both sample proportions in the standard error formula:

Copyright © 2010 Pearson Education, Inc. Slide Compared to What? We’ll reject our null hypothesis if we see a large enough difference in the two proportions. How can we decide whether the difference we see is large? Just compare it with its standard deviation. Unlike previous hypothesis testing situations, the null hypothesis doesn’t provide a standard deviation, so we’ll use a standard error (here, pooled).

Copyright © 2010 Pearson Education, Inc. Slide Two-Proportion z-Test The conditions for the two-proportion z-test are the same as for the two-proportion z-interval. We are testing the hypothesis H 0 : p 1 – p 2 = 0, or, equivalently, H 0 : p 1 = p 2. Because we hypothesize that the proportions are equal, we pool them to find

Copyright © 2010 Pearson Education, Inc. Slide Two-Proportion z-Test (cont.) We use the pooled value to estimate the standard error: Now we find the test statistic: When the conditions are met and the null hypothesis is true, this statistic follows the standard Normal model, so we can use that model to obtain a P-value.

Copyright © 2010 Pearson Education, Inc. The National Sleep Foundation conducted a study of 1010 randomly chosen people. Of the 995 respondents, 26% of the 184 people under 30 reported that they snored, while 39% of the 811 people over 30 reported snoring. Use a 2 proportion z-Test to determine if there really is a difference between the two age groups. Slide

Copyright © 2010 Pearson Education, Inc. If we go back to the online habits survey, Only 19% (62) of the 325 girls said they were easy to find from their online profiles, while 285 (75) of the 268 boys said the same. Are these results evidence of a difference between boys and girls? Perform a two proportion z-test and discuss what you find. Slide

Copyright © 2010 Pearson Education, Inc. Slide What Can Go Wrong? Don’t use two-sample proportion methods when the samples aren’t independent. These methods give wrong answers when the independence assumption is violated. Don’t apply inference methods when there was no randomization. Our data must come from representative random samples or from a properly randomized experiment. Don’t interpret a significant difference in proportions causally. Be careful not to jump to conclusions about causality.

Copyright © 2010 Pearson Education, Inc. Slide What have we learned? We’ve now looked at inference for the difference in two proportions. Perhaps the most important thing to remember is that the concepts and interpretations are essentially the same—only the mechanics have changed slightly.

Copyright © 2010 Pearson Education, Inc. Slide What have we learned? (cont.) Hypothesis tests and confidence intervals for the difference in two proportions are based on Normal models. Both require us to find the standard error of the difference in two proportions. We do that by adding the variances of the two sample proportions, assuming our two groups are independent. When we test a hypothesis that the two proportions are equal, we pool the sample data; for confidence intervals we don’t pool.