I. Physical Properties Ch. 12 - Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,

Slides:



Advertisements
Similar presentations
I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as described.
Advertisements

Behavior of Gases. Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide Gas molecules save your life! 2 NaN.
Kinetic Molecular Theory. What if… b Left a basketball outside in the cold… would the ball appear to be inflated or deflated? b Which picture box do you.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume have elastic collisions are in constant, random, straight-line.
Chapter Pressure Macro-Scale Pressure is the amount of force exerted over a given area  Familiar unit is “pounds per square inch” or psi (tire.
Lesson 1: The Nature of Gases UNIT 9 – GAS LAWS Chapter 13 and 14.
Think About This… Gas Atmosphere This is a U-Tube Manometer. The red stuff is a liquid that moves based on the pressures on each end of the tube. Based.
Gas Laws Gas Laws highly compressible. occupy the full volume of their containers. exert a uniform pressure on all inner surfaces of a container diffuse.
Gases and Gas Laws Chemistry– Unit 11: Chapter 14
C. Johannesson I. Physical Properties (p ) Ch. 10 & 11 - Gases.
CH 11 – Physical Characteristics of Gases: Objectives Describe how the kinetic-molecular theory of matter explains ideal gases Differentiate between ideal.
2 CHAPTER 12 GASES The Gas Laws u Describe HOW gases behave. u Can be predicted by the theory. u Amount of change can be calculated with mathematical.
The Gas Laws The Behavior of Gases. The Combined Gas Law The combined gas law expresses the relationship between pressure, volume and temperature of a.
II. The Gas Laws. A. Boyle’s Law P V PV = k A. Boyle’s Law The pressure and volume of a gas are inversely related o at constant mass & temp P V PV =
Gases. Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-line motion. don’t attract or repel each.
Properties and Measuring Variables Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are.
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
A theory concerning the thermodynamic behavior of matter, especially the relationships among pressure, volume, and temperature in gases. Kinetic Molecular.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Ch Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
II. Gas Laws Topic 10 Gases. A. Boyle’s Law P V PV = k.
I. The Gas Laws Ch Gases. A. Boyle’s Law b The pressure and volume of a gas are inversely related at constant mass & temp P V P 1 V 1 = P 2 V 2.
? Gases Chapter 4. ? Kinetic Molecular Theory Particles in an Ideal Gases…  have no volume.  have elastic collisions.  are in constant, random, straight-line.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have elastic.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
I. Physical Properties. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
I. Physical Properties Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no (very small) volume. have elastic collisions. are.
Gases Gas Animations. Kinetic Molecular Theory Particles in an ideal gas… –have no volume. –have elastic collisions. –are in constant, random, straight-line.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Ch Gases.  To describe a gas fully you need to state 4 measurable quantities:  Volume  Temperature  Number of molecules  pressure.
Gases & Kinetic Molecular Theory Kinetic molecular theory Gases Physical properties Temperature Pressure Boyles Law Charles Law Gay Lussacs Law Combined.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have.
C. Johannesson CHARACTERISTICS OF GASES Gases expand to fill any container. random motion, no attraction Gases are fluids (like liquids). no attraction.
Gas Laws: Physical Properties Part 1. Kinetic Molecular Theory b The tiny particles in matter are in constant motion due to kinetic energy. b 1. A gas.
The Gas Laws The Behavior of Gases. STPSTP b Standard Temperature and Pressure: b 273 K and 760 mm Hg b Or 0 C and 1atm.
II. The Gas Laws (p ) Ch. 10 & 11 - Gases.
Ideal Gas Law Gases. C. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids).
I. Physical Properties (p. 399 – 402, ) Ch Gases Gases notes #1 - gas properties.ppt.
I. Physical Properties I. Gases I. Gases. Nature of Gases b Gases have mass. b They can be compressed. b They completely fill their containers. b Representative.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have mass but no definite volume. have elastic collisions.
BellringerBellringer b An average human heart beats 60 times per minute. If the average person lives to the age of 75, how many times does the average.
AN INTRODUCTION To Gases What is a GAS? Solid Liquid Gas.
Gases I. Physical Properties.
A. Kinetic Molecular Theory
Ch. 10 & 11 - Gases II. The Gas Laws (p ) P V T.
Gases.
I. Physical Properties (p )
Ch.12- Gases I. Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p )
Gases I. Physical Properties.
Gas laws.
Gases Physical Properties.
Ch. 10 & 11 - Gases II. The Gas Laws (p ) P V T.
I. Physical Properties (p. 303 – 312 in school)
Gases I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as.
Ch. 10 & 11 - Gases II. The Gas Laws (p ) P V T C. Johannesson.
Ch Gases I. Physical Properties.
Chapter 1 Lesson 3 Mrs. Brock RJMS
Properties and Measuring Variables
The Gas Laws (p ) read the text first
Ch Gases I. Physical Properties.
Ch Gases I. Physical Properties.
Gases Physical Properties.
Chapter 7-1, 7-2.
Ch. 10 & 11 - Gases II. The Gas Laws (p ) P V T.
Gases and Laws – Unit 2 Version
Presentation transcript:

I. Physical Properties Ch Gases

A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight- line motion. don’t attract or repel each other. have an avg. KE directly related to Kelvin temperature.

C. Characteristics of Gases b Gases can be compressed. no volume = lots of empty space b Gases undergo diffusion & effusion. random motion

E. Pressure b Barometer measures atmospheric pressure Mercury Barometer Aneroid Barometer

E. Pressure b Manometer measures contained gas pressure U-tube ManometerBourdon-tube gauge

II. The Gas Laws BOYLES CHARLES GAY- LUSSAC Gases Gases

A. Boyle’s Law b The pressure and volume of a gas are inversely related at constant mass & temp P V P 1 V 1 = P 2 V 2

V T B. Charles’ Law b The volume and absolute temperature (K) of a gas are directly related at constant mass & pressure V 1 = V 2 T 1 T 2

P T C. Gay-Lussac’s Law b The pressure and absolute temperature (K) of a gas are directly related at constant mass & volume P 1 = P 2 T 1 T 2

= kPV PTPT VTVT T D. Combined Gas Law P1V1T1P1V1T1 = P2V2T2P2V2T2 P 1 V 1 T 2 = P 2 V 2 T 1

GIVEN: V 1 = 473 cm 3 T 1 = 36°C = 309K V 2 = ? T 2 = 94°C = 367K WORK: P 1 V 1 T 2 = P 2 V 2 T 1 E. Gas Law Problems b A gas occupies 473 cm 3 at 36°C. Find its volume at 94°C. CHARLES’ LAW TT VV (473 cm 3 )(367 K)=V 2 (309 K) V 2 = 562 cm 3

GIVEN: V 1 = 100. mL P 1 = 150. kPa V 2 = ? P 2 = 200. kPa WORK: P 1 V 1 T 2 = P 2 V 2 T 1 E. Gas Law Problems b A gas occupies 100. mL at 150. kPa. Find its volume at 200. kPa. BOYLE’S LAW PP VV (150.kPa)(100.mL)=(200.kPa)V 2 V 2 = 75.0 mL

GIVEN: V 1 = 7.84 cm 3 P 1 = 71.8 kPa T 1 = 25°C = 298 K V2 = ?V2 = ? P 2 = kPa T 2 = 273 K WORK: P 1 V 1 T 2 = P 2 V 2 T 1 (71.8 kPa)(7.84 cm 3 )(273 K) =( kPa) V 2 (298 K) V 2 = 5.09 cm 3 E. Gas Law Problems b A gas occupies 7.84 cm 3 at 71.8 kPa & 25°C. Find its volume at STP. P  T  VV COMBINED GAS LAW

GIVEN: P 1 = 765 torr T 1 = 23°C = 296K P 2 = 560. torr T 2 = ? WORK: P 1 V 1 T 2 = P 2 V 2 T 1 E. Gas Law Problems b A gas’ pressure is 765 torr at 23°C. At what temperature will the pressure be 560. torr? GAY-LUSSAC’S LAW PP TT (765 torr)T 2 = (560. torr)(309K) T 2 = 226 K = -47°C

GIVEN: P gas = ? P total = torr P H2O = 42.2 torr WORK: P total = P gas + P H2O torr = P H torr P gas = torr b A gas is collected over water at a temp of 35.0°C when the barometric pressure is torr. What is the partial pressure of the dry gas? DALTON’S LAW Look up water-vapor pressure on p.899 for 35.0°C. Sig Figs: Round to least number of decimal places. A. Dalton’s Law The total pressure in the collection bottle is equal to barometric pressure and is a mixture of the “gas” and water vapor.

B. Ideal Gas Law UNIVERSAL GAS CONSTANT R= L  atm/mol  K PV=nRT

GIVEN: P = ? atm n = mol T = 16°C = 289 K V = 3.25 L R = L  atm/mol  K WORK: PV = nRT P(3.25)=(0.412)(0.0821)(289) L mol L  atm/mol  K K P = 3.01 atm B. Ideal Gas Law b Calculate the pressure in atmospheres of mol of He at 16°C & occupying 3.25 L. IDEAL GAS LAW