[2+2] Photocycloaddition/ Fragmentation in the Synthesis of Guanacastepenes A and E Jennifer Chaytor November 2, 2006 University of Ottawa.

Slides:



Advertisements
Similar presentations
Amphidinolide A Isolation: 1. Kobayashi, J. et al. Tetrahedron Lett. 1986, 27, Kobayashi, J. et al. J. Nat. Prod. 1991, 54, Biological Activity:
Advertisements

The Nazarov cyclization is a [2+2] cyclization of a divinyl ketone 1 to a cyclopentenone product 5. This cyclization requires that a pentadienyl cation.
Tobe Lab Ayumi Yoshizaki
Iron Catalyzed Cross-Coupling Reaction: Recent Advances and Primary Mechanism Wang Chao
Rhodium Catalyzed Direct C-H Functionalization 陈殿峰
Myers’ Synthesis of Dynemicin A. Andrew G. Myers 140 publications to date (1981) B.S. at MIT – undergraduate research with W. R. Roush. ( ) Graduate.
1 D. A. Evans’ Asymmetric Synthesis — From 80’s Chiral Auxiliary to 90’s Copper Complexes and Their Applications in Total Synthesis Supervisor: Professor.
Catalytic Cross-coupling Reactions with Unactivated Alkyl Electrophiles and Alkyl Nucleophiles Heng Su 04/11/2008 Department of Chemistry Brandeis University.
Ligand Substitution Reactivity of Coordinated Ligands Peter H.M. Budzelaar.
Recent Development for Stereoselective Synthesis of 1,3-Polyol Ye Zhu Prof. Burgess’ Group Aug. 19, 2010.
Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills
A Cyclopropane Fragmentation Approach to Heterocycle Assembly Kevin Minbiole James Madison University August 11, 2005.
Palladium Catalyzed C-N Bond Formation Jenny McCahill
Epothilone A: The Nature, Synthesis, Characterization, and Conformation of an Anti-Cancer Drug University of Notre Dame Benjamin L. Hechler Thursday, April.
--- Dead Ends and Detours Supervisors: Prof. Zhen Yang & Jiahua Chen Reporter: Weiwu Ren The Journey of Azadirachtin.
Lactacystin: An Inhibitor in the Ubiquitin Proteasome Pathway Ami Jun-Yee Chin February 17, 2005.
Synthesis of Gelsemine Alexander J. L. Clemens Burke Group October 26, 2006.
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
化 学 系 Department of Chemistry Catellani Reaction
何玉萍 Palladium(II)-Catalyzed Alkene Functionalization.
1 BE : An Inhibitor of DNA –Topoisomerase II Indira Thapa November 24, 2005.
Wangqing Kong Zhu’s group meeting 13 th, Aug, 2015 Intramolecular Asymmetric Heck Reaction and Application in Natural Products Synthesis.
Synthesis of Optically Active  Amino Alcohols Changyou Yuan Department of Chemistry Michigan State University -A survey of major developments after the.
Reactions Catalyzed by Rhenium Carbonyl Complexes 杜宇鎏
Cations Carey & Sundberg, Part A Chapter 5, "Nucleophilic Substitution",
1. Abyssomicin C John Trant Department of Chemistry University of Ottawa, 2007.
Alcohols Biological Activity Nomenclature Preparation Reactions.
Synthesis and Biological Activity of Platensimycin
High-Oxidation-State Palladium Catalysis 报告人:刘槟 2010 年 10 月 23 日.
Total Synthesis of Communesins Jian-Zhou Huang
Total Synthesis of Zoanthamine Alkaloids
Litterature Meeting Enantioselective Total Synthesis of Avrainvillamide and Stephacidins A and B Aspergillus ochraceus.
Song jin July 10, 2010 Gong Group Meeting.
Peptidomimetics and Mimicry of  -Strand / Sheets and  -Sheet Sandwiches Jian Liu Merck & Co., Inc. Rahway, NJ
Ye Zhu 09/02/10 Burgess’s Group Meeting Chiral Ligands On A Spiro Scaffold for Transition-Metal- Catalyzed Asymmetric Reactions Work by Prof. Zhou Qi-Lin.
Utilization of Ring Closing Metathesis in Alkaloid Synthesis I. Synthetic Studies on the Immunosuppressant FR II. Toward the Total Synthesis of Lundurines.
Supervisor: Yong Huang Reporter: Qian Wang Date: Magical Chiral Spirobiindane Skeletons.
Reactions Involve Sulfur Ylides 陈殿峰 陈殿峰
Rhodium-Catalyzed Chemo- and Regioselective Decarboxylative Addition of β- Ketoacids to Allenes: Efficient Construction of Tertiary and Quaternary Carbons.
Progress Towards the Synthesis of 4,5-Benzoxepin Derivatives for Use in Coupling Reactions Bryanna Dowcett, Arthur Greenberg, Holly Guevara
Regioselective reactions of 3,4-pyridynes enabled
Jean-Louis Brochu Department of Chemistry University of Ottawa
The Work Of Pr Karl A. Scheidt Group Department of Chemistry, Northwestern UniVersity, Evanston.
Erik J. Sorensen B.A. in Chemistry from Syracuse University (1989)
Light and Palladium Induced Carbonylation Reactions of Alkyl Iodides Mechanism and Development Pusheng Wang Gong Group Meeting April 12 th 2014.
Synthesis of Discodermolides Useful for Investigating Microtubule Binding and Stabilization Melissa G. Morris CHEM 635 February 12, 2013 Hung, D. T.; Nerenberg,
Synthesis of novel polycyclic aromatic hydrocarbons by transannular cyclization Tobe Laboratory M1 Yamane Hiroshi.
Recycling the Waste: The Development of a Catalytic Wittig Reaction Angew. Chem. Int. Ed. 2009, 48, 6836 –6839.
Nicolas Gaeng Group seminar – LSPN – 30/04/15. Structures with multiple rings connected through one atom Nomenclature proposed by Adolf Baeyer in 1900.
Progress towards the Synthesis of 1-Benzoxepin; A Model Oxepin Substrate Ian Smith, Ryan Fitzgerald, Holly Guevara, Arthur Greenberg
Access to the Akuammiline Family of Alkaloids : Total Synthesis of (+)-Scholarisine A Speaker : Yi-Chih Lu Date : 2013/4/20 Gregory L. Adams, Patrick J.
Enantioselective Reactions Catalyzed by Iron Complexes Pablo Pérez.
Selected examples of Domino Reactions in Total Synthesis Dagoneau Dylan Zhu Group Frontiers in Chemical Synthesis May 22 th, 2014.
Bijay Bhattarai Faculty Advisor Debra D. Dolliver Kevin Shaughnessy University of Louisiana System Academic Summit /13/2013 SUZUKI COUPLING OF N-ALKOXYIMIDOYL.
Enantioselective Total Synthesis of Plectosphaeroic acid B J. Am. Chem. Soc. 2013, 133, 6549−6552 Salman Y. Jabri and Larry E. Overman* Speaker: 古宜加.
Synthesis of Daphnilongeranine C
Zhengren Xu, Qian Wang, and Jieping Zhu*
Low-Valent Iron-Catalyzed Transformations of Unsaturated Hydrocarbons
Total Synthesis of (±)-Cylindricine C
Chemoselective and Regioselective Oxidative
Enantioselective Total Synthesis of (+)-Gelsemine
Michael J. Krische Presented by Louis-Philippe Beaulieu
Ph.D. 2011, Caltech with John E. Bercaw
Ke Kong, John A. Enquist, Jr. , Monica E. McCallum, Genessa M
Synthesis of Biyouyanagin A
Total Synthesis of (±)-Indolizomycin
Kiyoun Lee and Dale L. Boger*
1. Palladium Catalyzed Organic Transformations
CONTENTS  INTRODUCTION  REACTION  MECHANISM  APPLICATION  SCOPE  CONCLUSION  REFERENCE.
CONTENTS  INTRODUCTION  REACTION  MECHANISM  APPLICATION  SCOPE  CONCLUSION  REFERENCE.
Presentation transcript:

[2+2] Photocycloaddition/ Fragmentation in the Synthesis of Guanacastepenes A and E Jennifer Chaytor November 2, 2006 University of Ottawa

2 Guanacastepene A  Isolated in 2000  Produced by the endophytic fungus CR115  Fungus isolated from the branch of a Daphnopsis americana tree from the Guanacaste Conservation Area in Costa Rica  Structure determined by NMR and X-ray crystallography  Mixture of two slowly interconverting conformers Clardy, J.; Brady, S.F.; Singh, M.P.; Janso, J.E. J. Am. Chem. Soc. 2000, 122, 2116 Clardy, J.; Brady, S.F.; Bondi, S.M. J. Am. Chem. Soc. 2001, 123, 9900

3 Five Guanacastepene Ring Systems  CR115 produces a family of related but structurally diverse metabolites  15 different guanacastepenes comprise five ring systems  All contain the tricyclic guanacastepene skeleton Clardy, J.; Brady, S.F.; Singh, M.P.; Janso, J.E. J. Am. Chem. Soc. 2000, 122, 2116 Clardy, J.; Brady, S.F.; Bondi, S.M. J. Am. Chem. Soc. 2001, 123, 9900

4 Potential New Antibiotics?  Guanacastepene A showed antibiotic activity against drug-resistant strains of Staphylococcus aureus and Enterococcus faecalis  Guanacastepene I showed antibacterial activity towards S. aureus  C-15 aldehyde or masked aldehyde appears to be necessary for activity  Guanacastepene A also displays nonselective hemolytic activity against human blood cells  Suggests nonspecific membrane lysis is the mode of action Clardy, J.; Brady, S.F.; Singh, M.P.; Janso, J.E. J. Am. Chem. Soc. 2000, 122, 2116 Clardy, J.; Brady, S.F.; Bondi, S.M. J. Am. Chem. Soc. 2001, 123, 9900 Clardy, J.; Singh, M.P.; Janso, J.E.; Luckman, S.W.; Brady, S.F.; Greenstein, M.; Maiese, W.M. J. Antibiot. 2002, 53, 256

5 Total and Formal Syntheses Danishefsky et. al, Angew. Chem. Int. Ed. 2002, 41, 2185 Danishefsky et al., Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefksy et al., J. Org. Chem. 2005, 70, Snider et al., J. Org. Chem. 2003, 68, 1030 Hanna et al., Org. Lett. 2004, 6, 1817 Mehta et al., Chem. Comm. 2005, 4456 Sorenson et al., J. Am. Chem. Soc. 2006, 128, 7025 Overman et al., J. Am. Chem. Soc. 2006, ASAP

6 Total and Formal Syntheses Danishefsky et. al, Angew. Chem. Int. Ed. 2002, 41, 2185 Danishefsky et al., Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefksy et al., J. Org. Chem. 2005, 70, Snider et al., J. Org. Chem. 2003, 68, 1030 Hanna et al., Org. Lett. 2004, 6, 1817 Mehta et al., Chem. Comm. 2005, 4456 Sorenson et al., J. Am. Chem. Soc. 2006, 128, 7025 Overman et al., J. Am. Chem. Soc. 2006, ASAP

7 Snider Retrosynthesis Snider, B.B.; Hawryluk, N.A. Org. Lett. 2001, 3, 569 Snider, B.B.; Shi, B. Tet. Lett. 2001, 42, 9123 Snider, B.B.; Hawryluk, N.A.; Shi, B. J. Org. Chem. 2003, 68, 1030 A  AB  ABC approach 17 linear steps 2.6% overall yield

8 Hanna Retrosynthesis Hanna, I.; Boyer, F-D.; Ricard, L. Org. Lett. 2004, 6, 1817 A  ABC approach 17 linear steps <1.8% overall yield

9 Danishefsky’s Approach A  AB  ABC approach Danishefsky, S.J.; Dudley, G.B. Org. Lett. 2001, 3, 2399 Danishefsky, S.J.; Tan, D.S.; Dudley, G.B. Angew. Chem. Int. Ed. 2002, 41, 2185 Danishefsky, S.J.; Lin, S.; Dudley, G.B.; Tan, D.S. Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

10 Synthesis of Hydroazulene Core Danishefsky, S.J.; Dudley, G.B. Org. Lett. 2001, 3, 2399 Danishefsky, S.J.; Tan, D.S.; Dudley, G.B. Angew. Chem. Int. Ed. 2002, 41, 2185 Danishefsky, S.J.; Lin, S.; Dudley, G.B.; Tan, D.S. Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

11 Successive Dialkylation Strategy Danishefsky, S.J.; Tan, D.S.; Dudley, G.B. Angew. Chem. Int. Ed. 2002, 41, 2185 Danishefsky, S.J.; Lin, S.; Dudley, G.B.; Tan, D.S. Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

12 Hydroboration and Oxidations Danishefsky, S.J.; Tan, D.S.; Dudley, G.B. Angew. Chem. Int. Ed. 2002, 41, 2185 Danishefsky, S.J.; Lin, S.; Dudley, G.B.; Tan, D.S. Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

13 Epoxide-Opening β- Elimination/Knoevenagel Cyclization Danishefsky, S.J.; Tan, D.S.; Dudley, G.B. Angew. Chem. Int. Ed. 2002, 41, 2185 Danishefsky, S.J.; Lin, S.; Dudley, G.B.; Tan, D.S. Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

14 Final Steps to Guanacastepene A Danishefsky, S.J.; Tan, D.S.; Dudley, G.B. Angew. Chem. Int. Ed. 2002, 41, 2185 Danishefsky, S.J.; Lin, S.; Dudley, G.B.; Tan, D.S. Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

15 Final Steps to Guanacastepene A Danishefsky, S.J.; Tan, D.S.; Dudley, G.B. Angew. Chem. Int. Ed. 2002, 41, 2185 Danishefsky, S.J.; Lin, S.; Dudley, G.B.; Tan, D.S. Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

16 Danishefsky’s Total Synthesis: Summary 17 steps to key intermediate (5.3% overall yield) 20 steps to Guanacastepene A (3.0% overall yield) Key step: tandem epoxide-opening β- elimination/Knoevenagel cyclization

17 Sorenson’s Approach Sorenson, E.J.; Shipe, W.D. Org. Lett. 2002, 4, 2063 Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025 A + C  AC  ABC approach

18 Reductive Opening of Cyclopropyl Ketones Shoulders, B.A.; Kwie, W.W.; Klyne, W.; Gardner, P.D. Tetrahedron, 1965, 21, 2973 Dauben, W.G.; Deviny, E.J. J. Am. Chem. Soc. 1966, 31, 3794

19 Reductive Opening of Cyclopropyl Ketones Breakage of 1,6 bond: -more stable 2º carbanion Breakage of 1,7 bond: -Less stable 3º carbanion -Overlap with π system Dauben, W.G.; Deviny, E.J. J. Am. Chem. Soc. 1966, 31, 3794

20 Favouring Cyclobutane Cleavage Crimmins, M.T.; Mascarella, S.W. Tet. Lett. 1987, 28, 5063

21 SmI 2 -Promoted Radical Ring Opening Motherwell, W.B.; Batey, R.A. Tetrahedron Letters, 1991, 32, 6649

22 Trapping of Samarium Enolates with Electrophiles Motherwell, W.B.; Batey, R.A. Tetrahedron Letters, 1991, 32, 6649

23 Synthesis of Ring A Sorenson, E.J.; Shipe, W.D. Org. Lett. 2002, 4, 2063 Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025

24 Synthesis of Stille Coupling Partner (Ring A) Sorenson, E.J.; Shipe, W.D. Org. Lett. 2002, 4, 2063 Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025

25 Synthesis of Ring C Sorenson, E.J.; Shipe, W.D. Org. Lett. 2002, 4, 2063 Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025

26 Synthesis of Ring C Sorenson, E.J.; Shipe, W.D. Org. Lett. 2002, 4, 2063 Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025

27 Resolution of C-Ring Fragment Sorenson, E.J.; Shipe, W.D. Org. Lett. 2002, 4, 2063 Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025

28 Stille Cross-Coupling Sorenson, E.J.; Shipe, W.D. Org. Lett. 2002, 4, 2063 Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025 Corey, E.J.; Han, X.; Stoltz, B.M. J. Am. Chem. Soc. 1991, 121, 7600

29 Proposed Catalytic Cycle for CuCl- Accelerated Stille Coupling Corey, E.J.; Han, X.; Stoltz, B.M. J. Am. Chem. Soc. 1991, 121, 7600

30 Formation of Ring B Sorenson, E.J.; Shipe, W.D. Org. Lett. 2002, 4, 2063 Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025

31 Proposed Mechanism Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025

32 Confirmation of Stereochemistry Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025

33 Synthesis of Guanacastepene E Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025

34 Synthesis of Guanacastepene E Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025

35 Completion of Formal Synthesis of Guanacastepene A Sorenson, E.J.; Shipe, W.D. Org. Lett. 2002, 4, 2063 Sorenson, E.J.; Shipe, W.D. J. Am. Chem. Soc. 2006, 128, 7025

36 Sorenson’s Formal Synthesis: Summary 1.2% overall yield of Guanacastepene E 1.2% overall yield of Danishefsky’s key intermediate to Guanacastepene A 24 steps (longest linear sequence is 17 steps) Key steps: π-allyl Stille cross-coupling followed by a [2+2] photocycloaddition/reductive fragmentation

37 Comparison of Key Steps

38 Acknowledgements Dr. Robert Ben Nick Afagh Paul Czechura Rachelle Denis Elena Dimitrijevic Hasan Khan Caroline Proulx Tahir Rana Roger Tam John Trant Elisabeth von Moos Former Ben Lab members

39

40 Investigation Non-Cyclizing Reduction  Increased dilution favours cyclization – suggests intermolecular pathway  THF-d 8 – no deuterium incorporation, no change in ratio of products  workup with D 2 O – no exchange of I for D  no remaining vinyllithium  Is enolizable cyclopentanone serving as a proton source? Danishefsky, S.J.; Dudley, G.B. Org. Lett. 2001, 3, 2399 Danishefsky, S.J.; Mandal, M. Tet. Lett. 2004, 45, 3827 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

41 Isotope Labelling  Using dideutero-cyclopropanone increased the ratio from 78:22 to 91:9 Danishefsky, S.J.; Dudley, G.B. Org. Lett. 2001, 3, 2399 Danishefsky, S.J.; Mandal, M. Tet. Lett. 2004, 45, 3827 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

42 Investigation Mechanism and Proton Source  Two proton sources: 1) enolizable cyclopentanone, 2) iodobutane via E2 elimination Danishefsky, S.J.; Dudley, G.B. Org. Lett. 2001, 3, 2399 Danishefsky, S.J.; Mandal, M. Tet. Lett. 2004, 45, 3827 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

43 Proposed Oxidation Danishefsky, S.J.; Lin, S.; Dudley, G.B.; Tan, D.S. Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, Expected result: Solvolysis gives retention Thermolysis gives inversion

44 Studies on Oxidation  Solvolysis goes with retention  Epoxidation must occur from β-face Danishefsky, S.J.; Lin, S.; Dudley, G.B.; Tan, D.S. Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

45 Torsional Steering Houk, K.N.; Danishefsky, S.J.; Cheong, P.H.; Yun, H. Org. Lett. 2006, 8, 1513

46 Stereoselective Epoxidation Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, Houk, K.N.; Danishefsky, S.J.; Cheong, P.H.; Yun, H. Org. Lett. 2006, 8, 1513

47 Studies on Oxidation  Thermolysis lacks stereoselectivity  Why? Danishefsky, S.J.; Lin, S.; Dudley, G.B.; Tan, D.S. Angew. Chem. Int. Ed. 2002, 41, 2188 Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

48 Competing Heterolytic Cleavage Danishefsky, S.J.; Mandal, M.; Yun, H.; Dudley, G.B.; Lin, S.; Tan, D.S. J. Org. Chem. 2005, 70, 10619

49 SmI 2 -Promoted Regioselective Radical Ring-Opening Kakiuchi, K.; Minato, K.; Tsutsumi, K.; Morimoto, T.; Kurosawa, H. Tet. Lett. 2003, 44, 1963

50 SmI 2 -Promoted Regioselective Radical Ring-Opening Kakiuchi, K.; Minato, K.; Tsutsumi, K.; Morimoto, T.; Kurosawa, H. Tet. Lett. 2003, 44, 1963