1 Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 8th Lecture / 8. Vorlesung.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Advanced Piloting Cruise Plot.
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 5th.
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 8 / Vorlesung 8 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I)
Dr.-Ing. René Marklein - NFT I - Lecture 10 / Vorlesung 10 - WS 2005 / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden.
Model Driven Engineering WS 11/12 Prof. Albert Zündorf Fachgebiet für Software Engineering Wilhelmshöher Allee Kassel (Raum 1339)
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
and 6.855J Spanning Tree Algorithms. 2 The Greedy Algorithm in Action
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 5 second questions
Year 6 mental test 10 second questions
1 Discreteness and the Welfare Cost of Labour Supply Tax Distortions Keshab Bhattarai University of Hull and John Whalley Universities of Warwick and Western.
Model Driven Engineering WS 11/12 Prof. Albert Zündorf Fachgebiet für Software Engineering Wilhelmshöher Allee Kassel (Raum 1339)
2010 fotografiert von Jürgen Roßberg © Fr 1 Sa 2 So 3 Mo 4 Di 5 Mi 6 Do 7 Fr 8 Sa 9 So 10 Mo 11 Di 12 Mi 13 Do 14 Fr 15 Sa 16 So 17 Mo 18 Di 19.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
ABC Technology Project
Plane wave reflection and transmission
EU market situation for eggs and poultry Management Committee 20 October 2011.
1 Undirected Breadth First Search F A BCG DE H 2 F A BCG DE H Queue: A get Undiscovered Fringe Finished Active 0 distance from A visit(A)
2 |SharePoint Saturday New York City
Green Eggs and Ham.
VOORBLAD.
15. Oktober Oktober Oktober 2012.
1 Breadth First Search s s Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s.
BIOLOGY AUGUST 2013 OPENING ASSIGNMENTS. AUGUST 7, 2013  Question goes here!
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
1 © 2004, Cisco Systems, Inc. All rights reserved. CCNA 1 v3.1 Module 6 Ethernet Fundamentals.
Universität Kaiserslautern Institut für Technologie und Arbeit / Institute of Technology and Work 1 Q16) Willingness to participate in a follow-up case.
LO: Count up to 100 objects by grouping them and counting in 5s 10s and 2s. Mrs Criddle: Westfield Middle School.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Addition 1’s to 20.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Januar MDMDFSSMDMDFSSS
Week 1.
Analyzing Genes and Genomes
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
PSSA Preparation.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Energy Generation in Mitochondria and Chlorplasts
Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 5th.
Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden.
Presentation transcript:

1 Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 8th Lecture / 8. Vorlesung Universität Kassel Fachbereich Elektrotechnik / Informatik (FB 16) Fachgebiet Theoretische Elektrotechnik (FG TET) Wilhelmshöher Allee 71 Büro: Raum 2113 / 2115 D Kassel Dr.-Ing. René Marklein University of Kassel Dept. Electrical Engineering / Computer Science (FB 16) Electromagnetic Field Theory (FG TET) Wilhelmshöher Allee 71 Office: Room 2113 / 2115 D Kassel

2 3-D FDTD – Derivation of the Discrete Equations / 3D-FDTD – Ableitung der diskreten Gleichungen The first two Maxwells Equations are in differential form / Die ersten beiden Maxwellschen Gleichungen lauten in Differentialform: In Cartesian Coordinates we find for the Curl operator applied to E and H / Im Kartesischen Koordinatensystem finden wir für den Rotationsoperator angewendet auf E und H:

3 3-D FDTD – Derivation of the Discrete Equations / 3D-FDTD – Ableitung der diskreten Gleichungen If we insert the last expressions into the first two Maxwells equations are in differential form read / Wenn wir die letzten Ausdrücke in the ersten beiden Maxwellschen Gleichungen in Differentialform einsetzen, erhalten wir: Six decoupled scalar equations! / Sechs entkoppelte skalare Gleichungen!

4 3-D FDTD – Derivation of the Discrete Equations / 3D-FDTD – Ableitung der diskreten Gleichungen If we insert the last expressions into the first two Maxwells equations are in differential form we read / Wenn wir die letzten Ausdrücke in die ersten beiden Maxwellschen Gleichungen in Differentialform einsetzen, erhalten wir:

5 3-D FDTD – Derivation of the Discrete Equations / 3D-FDTD – Ableitung der diskreten Gleichungen Constitutive equation for homogeneous isotropic materials / Konstituierende Gleichungen für homogene isotrope Materialien:

6 3-D FDTD – Derivation of the Discrete Equations / 3D-FDTD – Ableitung der diskreten Gleichungen A part of the discrete curl operator / Ein Teil des diskreten Rotationsoperators

7 2-D EM Wave Propagation – 2-D FDTD – TM and TE Case / 2D EM Wellenausbreitung – 2D-FDTD – TM- und TE-Fall 2-D TE Case / 2D-TE-Fall 2-D TM Case / 2D-TM-Fall Dual orthogonal grid system in space / Dual-orthogonales Gittersystem im Raum

8 2-D EM Wave Propagation – 2-D FDTD – TM Case/ 2D EM Wellenausbreitung – 2D-FDTD – TM-Fall 2-D TM Case / 2D-TM-Fall Two-dimensional staggered grid system in the 2- D TM case / Zweidimensionales versetztes Gittersystem im 2D-TM-Fall

9 Implementation of Boundary Conditions / Implementierung von Randbedingungen Boundary condition for a perfectly electrically conducting (PEC) material / Randbedingung für ein ideal elektrisch leitendes Material Plane wave boundary condition for a vertical incident plane wave / Ebene-Wellen-Randbedingung für eine vertikal einfallende ebene Welle PW BC / EW-RB PW BC / EW-RB PEC BC / IEL-RB PEC BC / IEL-RB Slit / Schlitz PEC BC / IEL-RB Plane wave excitation / Ebene-Wellen-Anregung

10 2-D EM Wave Propagation – 2-D FDTD – TM Case/ 2D EM Wellenausbreitung – 2D-FDTD – TM-Fall Ghost components which are allocated outside the simulation area / Geisterkomponenten, welche außerhalb des Simulationsgebietes liegen Ghost grid cells / Geistergitterzelle n Simulation area / Simulationsgebie t

11 2-D EM Wave Propagation – 2-D FDTD – TM Case/ 2D EM Wellenausbreitung – 2D-FDTD – TM-Fall Ghost grid cells / Geistergitterzelle n Simulation area / Simulationsgebie t Plane wave excitation / Ebene-Wellen-Anregung Slit / Schlitz

12 2-D TM FDTD – Diffraction on a Single Slit / 2D-TM-FDTD – Beugung an einem Spalt

13 2-D TM FDTD – Diffraction on a Single Slit / 2D-TM-FDTD – Beugung am Spalt Wave field movie of the H x field component / Wellenfeldfilm der H x -Feldkomponente Wave field movie of the H z field component / Wellenfeldfilm der H z -Feldkomponente Wave field movie of the E y field component / Wellenfeldfilm der E y -Feldkomponente

14 2-D TM FDTD – Diffraction on a Double Slit / 2D-TM-FDTD – Beugung am Doppelspalt

15 2-D TM FDTD – Diffraction on a Double Slit / 2D-TM-FDTD – Beugung am Doppelspalt Wave field movie of the H x field component / Wellenfeldfilm der H x -Feldkomponente Wave field movie of the H z field component / Wellenfeldfilm der H z -Feldkomponente Wave field movie of the E y field component / Wellenfeldfilm der E y -Feldkomponente

16 Photonic Crystals / Photonische Kristalle Joannopoulos, J. D., R. D. Meade, J. N. Winn: Photonic Crystals – Molding the Flow of Light. Princeton University Press, Princeton, Johnson, S. G.: Photonic Crystals: The Road from Theory to Practice. Kluwer Academic Press, Links: Photonic Crystals Research at MIT Homepage of Prof. Sajeev John, University of Toronto, Canada

17 2-D TM FDTD – Photonic Crystals / 2D-TM-FDTD – Photonische Kristalle

18 2-D TM FDTD – Photonic Crystals / 2D-TM-FDTD – Photonische Kristalle Wave field movie of the H x field component / Wellenfeldfilm der H x -Feldkomponente Wave field movie of the H z field component / Wellenfeldfilm der H z -Feldkomponente Wave field movie of the E y field component / Wellenfeldfilm der E y -Feldkomponente

19 2-D TM FDTD – Photonic Crystals / 2D-TM-FDTD – Photonische Kristalle Wave field movie of the H x field component / Wellenfeldfilm der H x -Feldkomponente Wave field movie of the H z field component / Wellenfeldfilm der H z -Feldkomponente Wave field movie of the E y field component / Wellenfeldfilm der E y -Feldkomponente

20 2-D TM FDTD – Photonic Crystals / 2D-TM-FDTD – Photonische Kristalle

21 2-D TM FDTD – Photonic Crystals / 2D-TM-FDTD – Photonische Kristalle

22 FDTD and FIT / FDTD und FIT FDTD : Finite Difference Time Domain / Finite Differenzen im Zeitbereich FIT : Finite Integration Technique / Finite Integrationstechnik FDTD Maxwells equations in differential form / Maxwellsche Gleichungen in Differentialform FIT Maxwells equations in integral form / Maxwellsche Gleichungen in Integralform FD approximation of spatial and temporal derivatives / FD- Approximation von räumlichen und zeitlichen Ableitungen FIT approximation of spatial and temporal integrals / FIT-Approximation von räumlichen und zeitlichen Integralen Central difference approximation / Zentrale Differenzen Approximation Mid point rule approximation of a 1-D integral / Mittelpunktsregel-Approximation eines 1D- Integrals

23 Definition of Material Cells / Definition der Materialzellen Material cell / Materialzelle

24 3-D FIT – Derivation of the Discrete Grid Equations / 3D-FIT – Ableitung der diskreten Gittergleichungen integration cell / -Integrationszelle Field component in the middle / Feldkomponente in der Mitte Approximation error / Approximationsfehler

25 3-D FIT – Derivation of the Discrete Grid Equations / 3D-FIT – Ableitung der diskreten Gittergleichungen integration cell / -Integrationszelle

26 3-D FIT – Derivation of the Discrete Grid Equations / 3D-FIT – Ableitung der diskreten Gittergleichungen Field component in the middle / Feldkomponente in der Mitte Approximation error / Approximationsfehler

27 3-D FIT – Derivation of the Discrete Grid Equations / 3D-FIT – Ableitung der diskreten Gittergleichungen integration cell / -Integrationszelle

28 3-D FIT – Derivation of the Discrete Grid Equations / 3D-FIT – Ableitung der diskreten Gittergleichungen integration cell / -Integrationszelle

29 3-D FIT – Derivation of the Discrete Grid Equations / 3D-FIT – Ableitung der diskreten Gittergleichungen integration cell / -Integrationszelle

30 3-D FIT – Derivation of the Discrete Grid Equations / 3D-FIT – Ableitung der diskreten Gittergleichungen integration cell / -Integrationszelle

31 3-D FIT – Derivation of the Discrete Grid Equations / 3D-FIT – Ableitung der diskreten Gittergleichungen

32 Dual-Orthogonal Grid System in Space / Dual-orthogonales Gittersystem im Raum 3-D / 3D Global node numbering / Globale Gitternummerierung

33 End of Lecture 8 / Ende der 8. Vorlesung