TRANSMISSION MEDIA’S BY KULA.

Slides:



Advertisements
Similar presentations
William Stallings Data and Computer Communications 7 th Edition Chapter 4 Transmission Media.
Advertisements

Introduction to Network (c) Nouf Aljaffan
Chapter 4 Transmission Media
ECS 152A 2. Physical Layer Aspects. Terminology (1) Transmitter Receiver Medium —Guided medium e.g. twisted pair, optical fiber —Unguided medium e.g.
ECS 152A Physical Layer Acknowledgement: Slides from Prof. Prasant Mohapatra.
1 Data Communications and Networking Chapter 4 Transmission Media Reading: Book Chapter 4 Data and Computer Communications, 8th edition By William Stallings.
Department of Electronic Engineering City University of Hong Kong EE3900 Computer Networks Transmission Media Slide 1 Overview Guided - wire Unguided -
COE 341: Data & Computer Communications (T081) Dr. Marwan Abu-Amara Chapter 4: Transmission Media.
William Stallings Data and Computer Communications 7 th Edition Chapter 4 Transmission Media.
1 Transmission Media Lesson 04 NETS2150/ Lesson Outline Wired or guided Media –Electromagnetics waves are guided along a solid medium Wireless.
COE 342: Data & Computer Communications (T042) Dr. Marwan Abu-Amara Chapter 4: Transmission Media.
Chapter 7 Transmission Media
1 •Lecture 2 •Paul Flynn Switching and the Local Loop.
William Stallings Data and Computer Communications 7 th Edition Chapter 4 Transmission Media.
Module 3.2: Transmission Media
Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 4 –Transmission Media.
CPSC 441 TA: FANG WANG TRANSMISSION MEDIA Part of the slides are from Sudhanshu Kumar etc at slideshare.net.
CS 408 Computer Networks Data Transmission Basics Not in the text book Excerpts from Chapter 3, 4 and 6 of Stallings, Data and Computer Communications,
Sistem Jaringan dan Komunikasi Data #3. Overview  guided - wire / optical fibre  unguided - wireless  characteristics and quality determined by medium.
Transmission Media Reading Assignment : Stallings Chapter 3 Transmission Media –physical path between transmitter and receiver –electromagnetic wave –Guided.
1 Chap. 3 Data Transmission & Transmission Media.
2-1 Physical Layer l Theoretical basis for data communications n Fourier analysis n distortion –by different attenuation rates of different frequency components.
Introduction to Information Technologies
CE 4228 DATA COMMUNICATIONS AND NETWORKING Transmission Media.
1 Business Telecommunications Data and Computer Communications Chapter 4 Transmission Media.
7.1 Chapter 7 Transmission Media. 7.2 Figure 7.1 Transmission medium and physical layer Transmission media are located below the physical layer and are.
Aegis School of Telecommunication Telecom Systems I by Dr. M. G. Sharma, Phd. IIT Kharagpur Microwaves and Antennas.
Physical Transmission
Introduction to Network (c) Nouf Aljaffan
1 William Stallings Data and Computer Communications 7 th Edition Chapter 4 Transmission Media.
1 K. Salah Module 3.2: Transmission Media Electromagnetic Spectrum Guided Transmission Media –Twisted Pair –Coaxial cable –Optical fiber Unguided Transmission.
1/21 Chapter 4 – Transmission Media. 2/21 Overview  guided – copper twisted pair, coaxial cable optical fiber  unguided – wireless; through air, vacuum,
Prof. Hosny Ibrahim Lecture 3. 11/20/2015 Data Communication IT 221 By: Prof. Hosny M. Ibrahim 2.
Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 4 –Transmission Media.
William Stallings Data and Computer Communications 7th Edition
Fundamentals of Telecommunication
Data and Computer Communications by William Stallings Eighth Edition
Transmission Media. Overview zGuided - wire zUnguided - wireless zCharacteristics and quality determined by medium and signal zFor guided, the medium.
Data Transmission Common media concepts. Data Transmission and Media.
Fifth Lecture Transmission Media. The physical path between the transmitter and receiver.
Transmission Media Lecture By Mehran Mamonai Department of Telecommunication.
William Stallings Data and Computer Communications
2. Physical Layer Aspects
Computer Communication Networks
CS 408 Computer Networks Data Transmission Basics Not in the text book
Chapter 7 Transmission Media.
William Stallings Data and Computer Communications 7th Edition
CS 408 Computer Networks Data Transmission Basics Not in the text book
7. Transmission Media.
5.1 - Data Transmission Basics
CS 408 Computer Networks Data Transmission Basics Not in the text book
CS 408 Computer Networks Data Transmission Basics Not in the text book
Switching & Data Networks
William Stallings Data and Computer Communications 7th Edition
CS 408 Computer Networks Data Transmission Basics Not in the text book
William Stallings Data and Computer Communications
CS 408 Computer Networks Data Transmission Basics Not in the text book
Transmission Media.
CS 408 Computer Networks Data Transmission Basics Not in the text book
CS 408 Computer Networks Data Transmission Basics Not in the text book
CS 408 Computer Networks Data Transmission Basics Not in the text book
William Stallings Data and Computer Communications 7th Edition
CS 408 Computer Networks Data Transmission Basics Not in the text book
William Stallings Data and Computer Communications 7th Edition
CS 408 Computer Networks Data Transmission Basics Not in the text book
CS 408 Computer Networks Data Transmission Basics Not in the text book
Chapter 4. Transmission Media
William Stallings Data and Computer Communications
University of Houston Datacom II Lecture 1C Review 2
William Stallings Data and Computer Communications
Presentation transcript:

TRANSMISSION MEDIA’S BY KULA

Types Of Transmission Media Twisted Pair Coaxial cable Optical fiber

Characteristics of Transmission Media   Frequency Range Typical Attenuation Typical Delay Repeater Spacing Twisted pair (with loading) 0 to 3.5 kHz 0.2 dB/km @ 1 kHz 50 µs/km 2 km Twisted pairs (multi-pair cables) 0 to 1 MHz 0.7 dB/km @ 1 kHz 5 µs/km Coaxial cable 0 to 500 MHz 7 dB/km @ 10 MHz 4 µs/km 1 to 9 km Optical fiber 186 to 370 THz 0.2 to 0.5 dB/km 40 km

Twisted Pair

Twisted Pair Application Most common medium Telephone network Between house and local exchange (subscriber loop) Within buildings To private branch exchange (PBX) For local area networks (LAN) 10Mbps or 100Mbps

Twisted Pair - Transmission Characteristics Analog Amplifiers every 5km to 6km Digital Use either analog or digital signals repeater every 2km or 3km Cheap Easy to work with Low data rate Short range

Near End Crosstalk Coupling of signal from one pair to another Coupling takes place when transmit signal entering the link couples back to receiving pair i.e. near transmitted signal is picked up by near receiving pair

UTP Categories Cat 3 Cat 4 Cat 5 Cat 5E (Enhanced) –see tables Cat 6 up to 16MHz Voice grade found in most offices Twist length of 7.5 cm to 10 cm Cat 4 up to 20 MHz Cat 5 up to 100MHz Commonly pre-installed in new office buildings Twist length 0.6 cm to 0.85 cm Cat 5E (Enhanced) –see tables Cat 6 Cat 7

Coaxial Cable

Coaxial Cable Applications Most versatile medium Television distribution Ariel to TV Cable TV Long distance telephone transmission Can carry 10,000 voice calls simultaneously Being replaced by fiber optic Short distance computer systems links Local area networks

Coaxial Cable - Transmission Characteristics Analog Amplifiers every few km Closer if higher frequency Up to 500MHz Digital Repeater every 1km Closer for higher data rates

Optical Fiber

Optical Fiber - Applications Long-haul trunks Metropolitan trunks Rural exchange trunks Subscriber loops LANs

Optical Fiber - Benefits Greater capacity Data rates of hundreds of Gbps Smaller size & weight Lower attenuation Electromagnetic isolation Greater repeater spacing 10s of km at least

Optical Fiber - Transmission Characteristics Act as wave guide for 1014 to 1015 Hz Portions of infrared and visible spectrum Light Emitting Diode (LED) Cheaper Wider operating temp range Last longer Injection Laser Diode (ILD) More efficient Greater data rate Wavelength Division Multiplexing

Wireless Transmission Frequencies 2GHz to 40GHz Microwave Highly directional Point to point Satellite 30MHz to 1GHz Omnidirectional Broadcast radio 3 x 1011 to 2 x 1014 Infrared Local

THANK YOU