Introduction on SiPM devices

Slides:



Advertisements
Similar presentations
Optoelectronics & Microsystems Lab Politecnico di Milano, Dip. Elettronica e Informazione, Milano, Italy.
Advertisements

New developments of Silicon Photomultipliers (for PET systems)
Liverpool Group presentation 22/07/2009
Chapter 9. PN-junction diodes: Applications
SiPM Interconnections to 3D electronics Jelena Ninkovic Max-Planck-Institute for Physics, Munich, Germany SiMPs basics Why do we need 3D interconnections.
Principles & Applications
EE 230: Optical Fiber Communication Lecture 11 From the movie Warriors of the Net Detectors.
PID Nagoya univ1 The possibility of improving TOP counter Nagoya university Yuji Enari.
Fiber-Optic Communications
Near-infrared (NIR) Single Photon Counting Detectors (SPADs)
TOF at 10ps with SiGe BJT Amplifiers
Solid-State Photomultiplier for the PRIMEX PbWO4 Calorimeter
McGraw-Hill © 2008 The McGraw-Hill Companies Inc. All rights reserved. Electronics Principles & Applications Seventh Edition Chapter 3 Diodes (student.
CUÑADO, Jeaneth T. GEQUINTO, Leah Jane P. MANGARING, Meleria S.
Chapter 6 Photodetectors.
Photon detection Visible or near-visible wavelengths
Higher Physics Semiconductor Diodes. Light Emitting Diode 1  An LED is a forward biased diode  When a current flows, electron-hole pairs combine at.
Venugopala Rao Dept of CSE SSE, Mukka Electronic Circuits 10CS32.
Principles & Applications
CHIPP Plenary Meeting, PSI, Oct Dieter Renker PAUL SCHERRER INSTITUT R&D on Photosensors.
Characterization of Silicon Photomultipliers for beam loss monitors Lee Liverpool University weekly meeting.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 3-1 Electronics Principles & Applications Eighth Edition Chapter 3 Diodes Charles.
H.-G. Moser Max-Planck-Institut for Physics, Munich CALOR 06 Chicago June 5-9, 2006 Silicon Photomultiplier, a new device for low light level photon detection.
Chapter 6 Photodetectors.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
MPPC Radiation Hardness (gamma-ray & neutron) Satoru Uozumi, Kobe University for Toshinori Ikuno, Hideki Yamazaki, and all the ScECAL group Knowing radiation.
C. Piemonte 1 Development of SiPMs a FBK-irst C.Piemonte FBK – Fondazione Bruno Kessler, Trento, Italy
Detector development and physics studies in high energy physics experiments Shashikant Dugad Department of High Energy Physics Review, 3-9 Jan 2008.
Salvatore Tudisco The new generation of SPAD Single Photon Avalanche Diodes arrays I Workshop on Photon Detection - Perugia 2007 LNS LNS.
SiPM: Development and Applications
Introduction Trapped Plasma Avalanche Triggered Transit mode Prager
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
Silicon Photomultipliers and other advanced silicon sensors The INFN MEMS project R. Battiston INFN Perugia March 12th 2007.
Photodetection EDIT Internal photoelectric effect in Si Band gap (T=300K) = 1.12 eV (~1100 nm) More than 1 photoelectron can be created by light in silicon.
R&D of MPPC for T2K experiment PD07 : Photosensor Workshop /6/28 (Thu) S.Gomi T.Nakaya M.Yokoyama H.Kawamuko ( Kyoto University ) T.Nakadaira.
An e.m. calorimeter on the Moon surface R.Battiston, M.T.Brunetti, F. Cervelli, C.Fidani MoonCal.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
1 Stephen SchultzFiber Optics Fall 2005 Semiconductor Optical Detectors.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
Photodetectors What is photodetector (PD)? Photodetector properties
10 th Pisa Meeting on Advanced Detectors, Isola d’Elba, May 2006 Development of the first prototypes of Silicon Photomultiplier at ITC-irst N. Dinu, R.
28 June 2007G. Pauletta: ALCPG Tests of IRST SiPMs G. Pauletta Univ. & I.N.F.N. Udine Outline 1.IRST SiPMs : baseline characteristics 2.first application.
D. Renker, PSI - Vertex 2006 Overview of Developments of Silicon Photomultiplier Detectors Dieter Renker Dieter Renker.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Optical Receivers Theory and Operation
Multipixel Geiger mode photo-sensors (MRS APD’s) Yury Kudenko ISS meeting, KEK, 25 January 2006 INR, Moscow.
Solid State Detectors - Physics
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
Venugopala Rao Dept of CSE SSE, Mukka Electronic Circuits 10CS32.
Photodetection EDIT Photodetection Principles, Performance and Limitations Nicoleta Dinu (LAL Orsay) Thierry Gys (CERN) Christian Joram (CERN) Samo Korpar.
The VSiPMT: A new Generation of Photons Detectors G. Barbarino 1,2, F. C. T. Barbato 1,2, R. de Asmundis 2, G. De Rosa 1,2, F. Di Capua 1, P. Migliozzi.
Study of Geiger Avalanche Photo Diode applications to pixel tracking detectors Barcelona Main Goal The use of std CMOS tech. APD's in Geiger mode (that.
Silicon Photomultiplier Development at GRAPES-3 K.C.Ravindran T.I.F.R, OOTY WAPP 2010 Worshop On behalf of GRAPES-3 Collaboration.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Study of the Radiation Damage of Hamamatsu Silicon Photo Multipliers Wander Baldini Istituto Nazionale di Fisica Nucleare and Universita’ degli Studi di.
D. Renker, PSI G-APD Workshop GSI, PAUL SCHERRER INSTITUT Problems in the Development of Geiger- mode Avalanche Photodiodes Dieter Renker Paul Scherrer.
LAL – RAPA- Sept 2008 Vincent CHAUMAT Présentation SiPM. Sommaire : 1- Vue d’ensemble des photo-détecteurs 2- Généralités sur les SiPMs. 3- Caractérisation.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
Development of Multi-Pixel Photon Counters (1)
Activities at SMI/Vienna in testing the performance of SiPMs
Introduction to the physics of the SiPM
Electronics & Communication Engineering
Progress report on SiPM development and its applications
PN-junction diodes: Applications
Proof of feasibility of VSiPMT (Vacuum Silicon PhotoMultiplier Tube)
R&D of MPPC for T2K experiment
Optical Receivers 1. Photo Detectors
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

Introduction on SiPM devices Nicoleta Dinu – LAL Groupe Instrumentation Nicoleta Dinu

Many fields of applications require photon detectors: Astroparticle physics (e.g. TOF, Imaging Cherenkov Counters) Nuclear medicine (e.g.  camera for PET system, diagnostic approaches) High energy physics (e.g. ILC calorimetry) Many others ..……… Characteristics to be fulfilled by the photon detector candidate: Highest possible photon detection efficiency (blue –green sensitive) High speed High internal gain Single photon counting resolution Low power consumption Robust, stable, compact Insensitive to magnetic fields Low cost Nicoleta Dinu

A look on photon detectors characteristics VACUUM TECHNOLOGY SOLID-STATE PMT MCP-PMT HPD PN, PIN APD GM-APD Photon detection efficiency Blue 20 % 60 % 50 % 30% Green-yellow 40 % 80-90 % 60-70 % 50% Red  6 % 90-100 % 80 % 40% Timing / 10 ph.e  100 ps  10 ps tens ns few ns tens of ps Gain 106 - 107 3 - 8x103 1  200 105 - 106 Operation voltage 1 kV 3 kV 20 kV 10-100V 100-500V  100 V Operation in the magnetic field  10-3 T Axial magnetic field  2 T Axial magnetic field  4 T No sensitivity Threshold sensitivity (S/N1) 1 ph.e 100 ph.e 10 ph.e Shape characteristics sensible bulky compact sensible, bulky robust, compact, mechanically rugged VACUUM TECHNOLOGY SOLID-STATE PMT MCP-PMT HPD PN, PIN APD GM-APD Photon detection efficiency Blue 20 % 70 % 50 % Green-yellow 40 % 80-90 % 60-70 % Red  6 % 80 % Timing / 10 ph.e  100 ps  10 ps few ns tens of ps Gain 106 - 107 3 - 8x103 1  200 V 105 - 106 Operation voltage 1 kV 3 kV 20 kV 100-500V  100 V Operation in the magnetic field  10-3 T Axial magnetic field  2 T Axial magnetic field  4 T No sensitivity Threshold sensitivity (S/N1) 1 ph.e 100 ph.e 10 ph.e Shape characteristics sensible bulky compact sensible, bulky robust, compact, mechanically rugged

PIN, APD & GM-APD PIN APD GM-APD p-n junction N-Type Silicon Depletion region P+ active area P-N junction edge P+ - Type N – Type Silicon p+-type silicon (substrate) p--type epitaxial layer p+ n+ p-n junction p-n junction, Vbias < VBD p-n junction, Vbias > VBD Gain = M (~ 50-500) - linear mode operation- Gain = 1 Gain → infinite -Geiger-mode operation-

Geiger Mode - APD the p-n junction is biased at Vbias > VBD i = imax current time p+-type silicon (substrate) p--type epitaxial layer p+ n+ t < t0 i = 0 t = t0 carrier initiates the avalanche t0 < t < t1 avalanche spreading t > t1 self-sustaining current (i = imax) to detect a new photon, a quenching mechanism is required current time t0 t1 t2 VBD Vbias V quenching -Vbias Quenching mechanisms Passive quenching: large resistance Active quenching: analog circuit F. Zappa & all, Opt. Eng. J., 35 (1996) 938 S. Cova & all, App. Opt. 35 (1996) 1956

Model of GM – APD & passive quenching (1) Pioneering work done in the 1960 to model micro-plasma instabilities RCA company by J. R. McIntire, IEEE Trans. Electron Devices, ED-13 (1996) 164 Shockley Research Laboratory by R. H. Haitz, J. App.. Phys. Vol. 36, No. 10 (1965) 3123 First order circuit model of the GM-APD with passive quenching Diode Rs – diode series impedance (~ 1 k) Cd – total junction capacitance VBD – breakdown voltage S – random on-off switching of the avalanche discharge Biasing circuit RQ – quenching resistance (> 100 k) Vbias – bias voltage CD RS VBD RQ VBIAS DIODE S

Model of GM – APD & passive quenching (2) OFF condition No charge traversing the breakdown region S – open Cd – charged to Vbias i ~ 0 through Rq ON condition Avalanche discharge triggered by a carrier generated in the breakdown region (e.g. photon or thermal carrier) S – closed Cd discharge to VBD with a time constant Rs x CD Diode current increases to (Vbias – VBD)/RQ (RQ >> Rs) Diode voltage decreases from Vbias to VBD Cd – recharge again to Vbias with a time constant RQ x Cd ready for a new detection DIODE S CD RQ VBIAS RS VBD current imax ~(Vbias – VBD)/RQ time V Vbias VBD t0 t1 t2 time

Standardized output signal From GM-APD to SiPM GM-APD – gives no information on the light intensity Current (a.u.) Time (a.u.) Standardized output signal p+-type silicon (substrate) p--type epitaxial layer p+ n+ Rquenching -Vbias SiPM (proposed by Sadygov and Golovin in the ’90) matrix of tiny pixels in parallel / each pixel = GM-APD + Rquench output signal is proportional to the number of triggered pixels Al ARC -Vbias Back contact p n+  Rquenching h p+ silicon wafer Front contact Out One pixel fired Two pixels fired Three pixels Current (a.u.) Time (a.u.) - Vbias n pixels GM-APD Rquench

There is SiPM a good candidate photon detector? Fast detector: short rise rime (hundreds of ps, determined by the short time required to avalanche spreading) Excellent capability for photon counting & low-light-level detection high internal gain proportional information to the number of incident photons Others interesting features low bias voltage (< 100V) low power consumption insensitive to magnetic fields compact and rugged Some characteristics under study and progressive technological improvement present devices cover only small surfaces (generally 1x 1 mm2, up to 3 x 3 mm2) reduced photon detection efficiency by the geometric fill factor relevant noise temperature dependence of the gain (breakdown voltage) and dark rate low radiation resistance (generation and trapping centers)