Brownian Motion René L. Schilling / Lothar Partzsch ISBN: 978-3-11-030729-0 © 2014 Walter de Gruyter GmbH, Berlin/Boston Abbildungsübersicht / List of.

Slides:



Advertisements
Similar presentations
Generating Random Spanning Trees Sourav Chatterji Sumit Gulwani EECS Department University of California, Berkeley.
Advertisements

N.B. the material derivative, rate of change following the motion:
Fig. 4-1, p Fig. 4-2, p. 109 Fig. 4-3, p. 110.
Parametric Equations Local Coordinate Systems Curvature Splines
Definition of Calculus
L7: Stochastic Process 1 Lecture 7: Stochastic Process The following topics are covered: –Markov Property and Markov Stochastic Process –Wiener Process.
Workshop on Stochastic Differential Equations and Statistical Inference for Markov Processes Day 1: January 19 th, Day 2: January 28 th Lahore University.
P.464. Table 13-1, p.465 Fig. 13-1, p.466 Fig. 13-2, p.467.
Fig. 11-1, p p. 360 Fig. 11-2, p. 361 Fig. 11-3, p. 361.
MISC.. Simulating Normal Random Variables Simulation can provide a great deal of information about the behavior of a random variable.
Table 6-1, p Fig. 6-1, p. 162 p. 163 Fig. 6-2, p. 164.
Chapter 4 Stochastic calculus 報告者:何俊儒. 4.1 Introduction.
Elements of Partial Differential Equations Pavel Drábek / Gabriela Holubová ISBN: © 2014 Walter de Gruyter GmbH, Berlin/Boston Abbildungsübersicht.
Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman.
Reflections. What will we accomplish in today’s lesson? Given a pre-image and its reflected image, determine the line of reflection. Given a pre-image.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Numerical Differentiation and Integration Part 6 Calculus.
Wicomico High School Mrs. J. A. Austin AP Calculus 1 AB Third Marking Term.
Applications of Trigonometry
Continuous Probability Distributions  Continuous Random Variable  A random variable whose space (set of possible values) is an entire interval of numbers.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 6- 1.
Nonlinear Programming Peter Zörnig ISBN: © 2014 by Walter de Gruyter GmbH, Berlin/Boston Abbildungsübersicht / List of Figures Tabellenübersicht.
Example of FUNCTIONS 1. : A CATALOG OF ESSENTIAL FUNCTIONS. FUNCTIONS AND MODELS.
1 Chapter 5 Ideal Filters, Sampling, and Reconstruction Sections Wed. June 26, 2013.
Interpolation and Approximation To the question, "Why approximate?", we can only answer, "Because we must!" Mathematical models of physical or natural.
Borgan and Henderson:. Event History Methodology
BROWNIAN MOTION A tutorial Krzysztof Burdzy University of Washington.
Basic Numerical Procedures Chapter 19 1 Options, Futures, and Other Derivatives, 7th Edition, Copyright © John C. Hull 2008.
TheoryApplication Discrete Continuous - - Stochastic differential equations - - Ito’s formula - - Derivation of the Black-Scholes equation - - Markov processes.
Illustration of FE algorithm on the example of 1D problem Problem: Stress and displacement analysis of a one-dimensional bar, loaded only by its own weight,
Security Markets VII Miloslav S. Vosvrda Teorie financnich trhu.
Chapter 61 Continuous Time Markov Chains Birth and Death Processes,Transition Probability Function, Kolmogorov Equations, Limiting Probabilities, Uniformization.
1 Coordinated Perimeters Based on an idea of Dan Meyer.
Intro to the Brownian Motion Yufan Fei “Introduction to Stochastic Calculus with Applications”. By Fima C Klebaner.
CSCE 441: Keyframe Animation/Smooth Curves (Cont.) Jinxiang Chai.
CSCE 441: Keyframe Animation/Smooth Curves (Cont.) Jinxiang Chai.
Chapter 2: Frequency Distributions. Frequency Distributions After collecting data, the first task for a researcher is to organize and simplify the data.
Topics 1 Specific topics to be covered are: Discrete-time signals Z-transforms Sampling and reconstruction Aliasing and anti-aliasing filters Sampled-data.
1 Chapter 6 Time Delays Time delays occur due to: 1.Fluid flow in a pipe 2.Transport of solid material (e.g., conveyor belt) 3.Chemical analysis -Sampling.
General Physics I Lecturer: Rashadat Gadmaliyev Lecture 2: Position vectors, Trajectory, Velocity Speed and Acceleration.
Trigonometric Functions of Real Numbers 5. Trigonometric Graphs 5.3.
Modelling Complex Systems Video 4: A simple example in a complex way.
2.3 Basic Differentiation Formulas
Commutative Property of Addition
Theory of Capital Markets
Differentiation-Discrete Functions
2.3 Basic Differentiation Formulas
Differentiation-Discrete Functions
§ 4.4 The Natural Logarithm Function.
Dots 5 × TABLES MULTIPLICATION.
Dots 5 × TABLES MULTIPLICATION.
Dots 2 × TABLES MULTIPLICATION.
5 × 7 = × 7 = 70 9 × 7 = CONNECTIONS IN 7 × TABLE
5 × 8 = 40 4 × 8 = 32 9 × 8 = CONNECTIONS IN 8 × TABLE
Dots 3 × TABLES MULTIPLICATION.
Defining Motion Terms for analyzing motion
Dots 6 × TABLES MULTIPLICATION.
4 × 6 = 24 8 × 6 = 48 7 × 6 = CONNECTIONS IN 6 × TABLE
5 × 6 = 30 2 × 6 = 12 7 × 6 = CONNECTIONS IN 6 × TABLE
Dots 2 × TABLES MULTIPLICATION.
Dots 4 × TABLES MULTIPLICATION.
10 × 8 = 80 5 × 8 = 40 6 × 8 = CONNECTIONS IN 8 × TABLE MULTIPLICATION.
Rate of Change The rate of change is the change in y-values over the change in x-values.
3 × 12 = 36 6 × 12 = 72 7 × 12 = CONNECTIONS IN 12 × TABLE
Section 6 – 6 Placing Figures in the Coordinate Plane
5 × 12 = × 12 = × 12 = CONNECTIONS IN 12 × TABLE MULTIPLICATION.
5 × 9 = 45 6 × 9 = 54 7 × 9 = CONNECTIONS IN 9 × TABLE
Finding the Missing Coordinate
3 × 7 = 21 6 × 7 = 42 7 × 7 = CONNECTIONS IN 7 × TABLE
2.5 Basic Differentiation Properties
Dots 3 × TABLES MULTIPLICATION.
Presentation transcript:

Brownian Motion René L. Schilling / Lothar Partzsch ISBN: © 2014 Walter de Gruyter GmbH, Berlin/Boston Abbildungsübersicht / List of Figures Tabellenübersicht / List of Tables

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Basic stochastic calculus (C) 2

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Basic Markov processes (M) 3

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Basic sample path properties (S) 4

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston 5 Fig Renewal at time. The process := + −, 0, is again a BM.

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig Time inversion. The process := − −, ∈ [0, ], is again a BM. 6

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston 7

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig The first four interpolation steps in Lévy’s construction of Brownian motion. 8

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston 9

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig The first few approximation steps in Donsker’s construction: = 5, 10, 100 and

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig Brownian paths meeting (and missing) the sets 1,..., 5 at times 1,..., 5 11

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Table 4.1. Transformations of Brownian motion. 12

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig A Brownian path meeting (and missing) the sets 1,..., 5 at times 1,..., 5 13

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig := + −, 0, is a Brownian motion in the new coordinate system with origin (, ). 14

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig Reflection upon reaching the level for the first time. 15

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig Both and the reflection are Brownian motions. 16

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig A [reflected] Brownian path visiting the [reflected] interval at time. 17

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig Exit time and position of a Brownian motion from the set. 18

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig The outer cone condition. A point ∈ is regular, if we can touch it with a (truncated) cone which is in. 19

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig Examples of singular points. 20

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig Brownian motion has to exit (0,1) before it leaves ( 1, 2). 21

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig A ‘cubistic’ version of Lebesgue’s spine. 22

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig Position of the points and and their dyadic approximations. 23

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig Position of the points, +1 and, +1 relative to and. 24

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig Exhausting the interval [, + ℎ ] by non-overlapping dyadic intervals. Dots “” denote dyadic numbers. Observe that at most two dyadic intervals of any one length can occur. 25

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig A typical excursion interval: and are the last zero before > 0 and the first zero after > 0. 26

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston 27

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig For each value () of the line segment connecting (/) and ( +1 /) there is some such that () = (). 28

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Fig Approximation of a simple function by a left-continuous simple function. 29

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston Table Multiplication table for stochastic differentials. 30

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston 31

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston 32 Fig An increasing right-continuous function and its generalized right-continuous inverse.

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston 33 Fig Derivation of the backward and forward Kolmogorov equations.

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston 34 Fig Simulation of a two-dimensional -Brownian motion.

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston 35 Fig. A.1. Two upcrossings over the interval [, ].

Brownian Motion, René L. Schilling / Lothar Partzsch ISBN © 2014 Walter de Gruyter GmbH, Berlin/Boston 36 Fig. A.2. The set is covered by dyadic cubes of different generations.