Reactor Antineutrino Anomaly

Slides:



Advertisements
Similar presentations
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Advertisements

Be BeTe BeO Gamma-ray spectroscopy of cluster hypernuclei : 9  Be K. Shirotori for the Hyperball collaboration, Tohoku Univ. 8 Be is known as the  -
 -Ray Emission Probabilities Edgardo Browne Decay Data Evaluation Project Workshop May 12 – 14, 2008 Bucharest, Romania.
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Alejandro Sonzogni Subgroup 25 May 3, 2006 meeting Using INEL TAGS data in the ENSDF/B-VII Decay Data Library Alejandro Sonzogni National Nuclear Data.
Past Experience of reactor neutrino experiments Yifang Wang Institute of High Energy Physics, Beijing Nov. 28, 2003.
The role of isospin in Fusion-Evaporation reactions Antonio Di Nitto INFN Sezione di Napoli, Italy Outline Level density dependence on isospin Statistical.
Precision tests of calculated internal-conversion coefficients: the case of 134 Cs. W. E. Rockwell Cyclotron Institute, TAMU Summer 2005 Advisor: J. C.
Nuclear data: fission yields, decay heat and neutron reaction cross sections: A Proposal for a Nuclear Data Consortium Universities of Manchester, Surrey.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Reactor & Accelerator Thanks to Bob McKeown for many of the slides.
University of Brighton 30 March 2004RISING stopped beam physics workshop Microsecond isomers in A~110 nuclei Few nuclei have oblate ground states (~86%
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Recycling NuDat Programs A.A. Sonzogni, T.D. Johnson, E.A. McCutchan, National Nuclear Data Center Brookhaven National Laboratory Building 817 Upton, NY.
O Reactor antineutrinos in the world V. Chubakov 1, F. Mantovani 1, B. Ricci 1, J. Esposito 2, L. Ludhova 3 and S. Zavatarelli 4 1 Dip. di Fisica, Università.
Compilation and Evaluation of Beta-Delayed Neutron emission probabilities and half-lives of precursors in the Non-Fission Region (A ≤ 72) M. Birch and.
1Managed by UT-Battelle for the U.S. Department of Energy Simulation of βn Emission From Fission Using Evaluated Nuclear Decay Data Ian Gauld Marco Pigni.
International Atomic Energy Agency Nuclear Data Development and Dissemination at IAEA Paraskevi (Vivian) Dimitriou Nuclear Data Section, Division of Physical.
Prediction of Reactor Neutrino Spectra David Lhuillier CEA Saclay - France.
SUBATECH : S. Cormon, M. Fallot, L. Giot, B. Guillon, J. Martino CEA/DAPNIA/SPhN : D. Lhuillier, A. Letourneau, T. Mueller CEA/DAPNIA/SPP : M. Cribier,
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
The polar experience: IGISOL proposal I77, study of the beta decay of 102,104,105 Tc by means of the total absorption technique A. Algora IFIC-Univ. Valencia.
Futoshi Minato JAEA Nuclear Data Center, Tokai Theoretical calculations of beta-delayed neutrons and sensitivity analyses 1.
Nuclear Data and Applications
IAEA Nuclear Data Section, Vienna, Austria
Decay Spectroscopy Working Group Nuclear Structure Theory Morten Hjorth-Jensen – Shell Structure and Interactions Ivan Borzov – Theory of  Decay Applications.
NUCLEAR DATA REQUIREMENTS FOR DECAY HEAT CALCULATIONS DECAY DATA.
INPC2007-TokyoLhuillier David - CEA Saclay - France1 Double Chooz Experiment and Applied Neutrino Physics CEA Saclay : M. Cribier, T. Lasserre, A. Letourneau,
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
A new approach to estimating the probability for  delayed neutron emission E. A. McCutchan A.A. Sonzogni T.D. Johnson National Nuclear Data Center Brookhaven.
Recent Activities on Measurement and Evaluation of Nuclear Data at VECC G. Mukherjee Variable Energy Cyclotron Centre 1/AF Bidhan Nagar, Kolkata, India.
Beta Delayed Neutron Covariances Tim Johnson, Libby McCutchan, Alejandro Sonzogni National Nuclear Data Center.
Neutron transfer reactions at large internuclear distances studied with the PRISMA spectrometer and the AGATA demonstrator.
Measurement of the η’N scattering length at LEPS2 2014/2/20 Keigo Mizutani Kyoto Univ.
Incomplete fusion studies near Coulomb barrier Pragya Das Indian Institute of Technology Bombay Powai, Mumbai , India.
Anti-neutrinos Spectra from Nuclear Reactors Alejandro Sonzogni National Nuclear Data Center.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Nuclear structure around 100 Sn Darek Seweryniak, ANL.
Core-excited states in 101 Sn Darek Seweryniak, ANL GS/FMA collaboration.
Application Nuclear Data Needs
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
Efforts in Russia V. Sinev Kurchatov Institute. Plan of talk Rovno experiments at th On the determination of the reactor fuel isotopic content by.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Beta decay studies using total absorption gamma spectroscopy technique A. Algora, M. Csatlós, L. Csige, J. Gulyás, M. Hunyadi, A. Krasznahorkay Institute.
Reactor Antineutrinos & Non Proliferation : Nantes (SUBATECH) & SPhN CEA Saclay 1 Muriel Fallot AAP Workshop – 26 sept. 06 Experimental needs for a better.
Alejandro SonzogniNSDD 2007 Decay Data Library In ENDF/B-VII Alejandro Sonzogni National Nuclear Data Center Brookhaven National Laboratory
Past Reactor Experiments (Some Lessons From History)
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
Spectroscopy studies by  decay -Proton-rich nuclei N~Z Deformation in the mass region A~75 Fundamental aspects of weak interaction, test of CVC -Neutron-rich.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.
19 March 2009Thomas Mueller - Workshop AAP09 1 Spectral modeling of reactor antineutrino Thomas Mueller – CEA Saclay Irfu/SPhN.
1 Neutrino Physics 2 Pedro Ochoa May 22 nd What about solar neutrinos and the solar neutrino problem? KamLAND uses the entire Japanese nuclear.
TAGS data in ENDF/B-VII.1 and ENDF/B-VII.1.1 A.A. Sonzogni, T.D. Johnson, E.A. McCutchan, National Nuclear Data Center.
High Precision Decay Data for Medical Isotopes. Decay Data and Medical Isotopes Essential for determining: Overall dose Specific dose Imaging background.
A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany and CHARMS Measurements and simulations of projectile and fission fragments.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
A monochromatic neutrino beam for  13 and  J. Bernabeu U. de Valencia and IFIC NO-VE III International Workshop on: "NEUTRINO OSCILLATIONS IN VENICE"
Non-equilibrium Antineutrino spectrum from a Nuclear reactor We consider the evolution of the reactor antineutrino energy spectrum during the periods of.
Study of isomeric states using gamma spectroscopy around N=40 C. Petrone 1,2, J. M. Daugas 3, M. Stanoiu 1, F. Negoita 1, G. Simpson 4, C. Borcea 1, R.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Spectroscopy studies around 78 Ni and beyond N=50 via transfer and Coulomb excitation reactions J. J. Valiente Dobón (INFN-LNL, Padova,Italy) A. Gadea.
QCHS 2010 Lei Zhang1 Lei Zhang (on behalf of BESIII Collaboration) Physics School of Nanjing University Recent.
“Energy & Transmutation of Radioactive Waste“ collaboration workshop Řež, from June 4 up to June 8 1 Nuclear Physics Institute Řež Methodical comments.
Report (2) on JPARC/MLF-12B025 Gd(n,  ) experiment TIT, Jan.13, 2014 For MLF-12B025 Collaboration (Okayama and JAEA): Outline 1.Motivation.
Cumulated beta spectrum measurements of fission products
Recent re-Evaluation of Reactor n Flux
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Nuclear Data for Reactor Fluxes
Presentation transcript:

Reactor Antineutrino Anomaly E.A. McCutchan, A.A. Sonzogni, T.D. Johnson National Nuclear Data Center Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

Detection through inverse  decay on proton Anti-neutrinos from reactors Principal Contributors 235U, 238U, 239Pu, 241Pu Daya Bay F.P. An et al., Phys. Rev. Lett. 108, 171803 (2012) Detection through inverse  decay on proton

What is the “Reactor Anomaly”? Survey of 19 short baseline (<100 m) reactor antineutrino experiments Number of Observed/Predicted = 0.943  0.023 (Deviation from 1.0 at 98.6 % C.L.) G. Mention et al., Phys. Rev. D 83, 073006 (2011). Result confirmed (1.4 from 1.0) in C. Zhang et al., Phys. Rev. D 87, 073018 (2013).

Total  spectrum measured in 1980’s How to determine “predicted”? Conversion method Total  spectrum measured in 1980’s at ILL for 235U, 239Pu, 241Pu Fit using ~30 “virtual” branches

How to determine “predicted”? Summation method (or ab-initio method) Single nucleus – sum  branches*intensity Hybrid method Ab-initio with known data = 90% Conversion with 5 virtual branches Th. A Mueller et al., Phys. Rev. C 83, 054615 (2011) Total – sum  spectrum*fission yield 𝑆 𝐸 𝑒 = 𝑖 𝐹𝑌 𝑖 𝑆 𝑖 ( 𝐸 𝑖 )

What are the implications? Many possible explanations Predicted Antineutrino spectrum is incorrect Experimental bias in all 19 experiments New physics at short baselines Existence of a 4th sterile neutrino Would impact 13 results

Efforts by the Neutrino Community Numerous Very Short Baseline Experiments ranging from operating to planning stages Nucifer, France Neutrino-4, Russia PROSPECT, USA Operational, D=7m Nearly Operational, D=6-13m Conceptual CORMORAD – Italy, PANDA – Japan, SOLiD - France

What can our community contribute ?

Main Contributors at 4.5 MeV 37-Rb-92 39-Y-96 41-Nb–100 55-Cs-142 37-Rb-90 55-Cs-140 52-Te –135 38-Sr-95 239Pu 41-Nb-100 39-Y-96 37-Rb–92 55-Cs-140 55-Cs-142 38-Sr-95 52-Te-135 39-Y- 98m 241Pu 39-Y-96 41-Nb-100 55-Cs – 142 52-Te- 135 37-Rb-92 55-Cs- 140 53-I- 137 39-Y-99 238U 39-Y-96 37-Rb-92 41-Nb –100 55-Cs-142 52-Te-135 39-Y-99 55-Cs-143 53-I-138 These top 8 contribute 30%-40% to the overall spectrum

What do these have in common? First forbidden non-unique, ground-state to ground-state transition accounting for 95% of beta intensity Need precise measurements of g.s. to g.s. (or g.s. to low-lying states)  intensity

Complete data trumps all Total Absorption Gamma-ray Spectroscopy (TAGS) Direct Beta-Spectrum Measurements Rudstam TAGS Greenwood et al., + few Valencia Rudstam et al., At.Data Nucl.Data Tables 45, 239 (1990) Precise measurements of the  spectrum itself Talk by Nick Scielzo in next session and/or New TAGS measurements

Again, see talk by Nick Scielzo in next session Allowed versus Forbidden Transitions A.C. Hayes et al., arXiv:1309.4146v3 Again, see talk by Nick Scielzo in next session

Summary Reactor anomaly provides nice link between neutrino physics and nuclear structure physics Neutrino community investing significant time and effort but they need our help to sort out all the pieces CARIBU is well suited both in beams and detector systems to address the main issues Problem is difficult but not impossible

Main Contributors at 6 MeV 37-Rb-92 39-Y-96 55-Cs – 142 37-Rb- 93 39-Y-98m 37-Rb- 94 35-Br – 86 39-Y-98 239Pu 37-Rb-92 39-Y-96 55-Cs – 142 39-Y-98m 37-Rb- 93 41-Nb- 104m 41-Nb- 104 37-Rb- 94 241Pu 37-Rb-92 39-Y-96 55-Cs – 142 41-Nb- 104 39-Y-98m 37-Rb- 93 41-Nb- 104m 53-I-138 238U 37-Rb-92 39-Y-96 55-Cs – 142 37-Rb- 93 39-Y-100 51-Sb- 135 37-Rb- 94 50-Sn-133

Why these? Large Q value Large cumulative fission yield Large beta-feeding to low-lying states 235U 37-Rb-92 39-Y-96 55-Cs – 142 37-Rb- 93 39-Y-98m 37-Rb- 94 35-Br – 86 39-Y-98 <beta> (MeV) 3.887 3.205 2.924 2.155 2.530 2.020 1.944 2.996 FY 0.048 (0.048) 0.047 (0.060) 0.029 (0.027) 0.035 (0.036) 0.019 (0.011) 0.015 (0.016) 0.019 (0.016) 0.011 (0.019) FY * <beta> 0.19 (0.19) 0.15 (0.19) 0.085 (0.079) 0.075 (0.078) 0.048 (0.028) 0.030 (0.032) 0.037 (0.031) 0.033 (0.057)

Conflicting Results on 92Rb decay 50% 95%

One small nucleus, one big effect 92Rb a) 2000 ENSDF 51(18) % g.s. b) Update with new data 92Rb 95(5) % g.s.

Reasonable agreement between discrete line data and Rudstam 142Cs decay: Case closed Reasonable agreement between discrete line data and Rudstam Courtesy of S. Zhu -ANL 71 Levels 217 placed gamma’s 20 Levels ~30 placed gamma’s ~80 unplaced gamma’s

Main Contributors at 6 MeV 37-Rb-92 39-Y-96 55-Cs – 142 37-Rb- 93 39-Y-98m 37-Rb- 94 35-Br – 86 39-Y-98 239Pu 37-Rb-92 39-Y-96 55-Cs – 142 39-Y-98m 37-Rb- 93 41-Nb- 104m 41-Nb- 104 37-Rb- 94 241Pu 37-Rb-92 39-Y-96 55-Cs – 142 41-Nb- 104 39-Y-98m 37-Rb- 93 41-Nb- 104m 53-I-138 238U 37-Rb-92 39-Y-96 55-Cs – 142 37-Rb- 93 39-Y-100 51-Sb- 135 37-Rb- 94 50-Sn-133

Closer look at 104,104mNb No discrete line data !!! No Rudstam data No TAGS data No discrete line data !!! (’s from mixed source, no  feedings could be determined) Beta-spectra are from CGM calculation

Neutron-rich Nb’s Q=6384 CFY=0.057 Q=7210 CFY=0.028 Q=8100 CFY=0.0036 239Pu:

Very limited data EEM ELP 1+ 0.79 2.55 2.4 3.06 2.46 4+/5+ 2.21 2.01 2.1 2.3

Main Contributors at 6 MeV 37-Rb-92 39-Y-96 55-Cs – 142 37-Rb- 93 39-Y-98m 37-Rb- 94 35-Br – 86 39-Y-98 239Pu 37-Rb-92 39-Y-96 55-Cs – 142 39-Y-98m 37-Rb- 93 41-Nb- 104m 41-Nb- 104 37-Rb- 94 241Pu 37-Rb-92 39-Y-96 55-Cs – 142 41-Nb- 104 39-Y-98m 37-Rb- 93 41-Nb- 104m 53-I-138 238U 37-Rb-92 39-Y-96 55-Cs – 142 37-Rb- 93 39-Y-100 51-Sb- 135 37-Rb- 94 50-Sn-133

Beware of “false positives”

Other energy regions of the spectrum 235U main contributors to anti-neutrino spectra Nucleus % at 3 MeV 54-Xe-137 3.519 55-Cs-139 3.259 39-Y - 94 3.120 40-Zr- 99 3.010 41-Nb-100 2.916 41-Nb- 98 2.830 39-Y – 92 2.812 41-Nb-101 2.654 Nucleus % at 4 MeV 41-Nb-100 4.872 37-Rb- 92 3.694 39-Y - 96 3.545 52-Te-135 2.994 39-Y - 94 2.897 55-Cs-140 2.780 39-Y - 95 2.646 54-Xe-139 2.606 Nucleus % at 5 MeV 37-Rb- 92 9.171 39-Y - 96 7.475 41-Nb-100 6.592 55-Cs-142 4.585 55-Cs-140 4.153 52-Te-135 3.636 39-Y - 99 3.460 38-Sr- 95 3.435 Rudstam ’s and/or TAGS “High priority” “Top three” Rudstam ’s Reminder : There are others that don’t even make the list !!

How to “fit in” with nuclear structure Nucleus % at 4 MeV 41-Nb-100 4.872 37-Rb- 92 3.694 39-Y - 96 3.545 52-Te-135 2.994 39-Y - 94 2.897 55-Cs-140 2.780 39-Y - 95 2.646 54-Xe-139 2.606 Nucleus % at 5 MeV 37-Rb- 92 9.171 39-Y - 96 7.475 41-Nb-100 6.592 55-Cs-142 4.585 55-Cs-140 4.153 52-Te-135 3.636 39-Y - 99 3.460 38-Sr- 95 3.435

Rudstam’s data Measured beta and gamma single spectra for the decay of 80+ fission products Betas Plastic (DE) + HPGe(E), high E Si(Li) with Plastic (veto), low E Gammas NaI(Tl) crystal The obtained mean energies are very useful for decay heat calculations Rudstam et al., At.Data Nucl.Data Tables 45, 239 (1990)