Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay SN 1006 Georg Raffelt, Max-Planck-Institut für.

Slides:



Advertisements
Similar presentations
Neutrinos and the stars
Advertisements

Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Supernova Neutrinos Georg Raffelt, Max-Planck-Institut.
Neutrinos in Astrophysics and Cosmology
Supernova Neutrinos Physics Opportunities with
Collective oscillations of SN neutrinos :: A three-flavor course :: Amol Dighe Tata Institute of Fundamental Research, Mumbai Melbourne Neutrino Theory.
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Neutrino oscillations/mixing
Neutrinos 2. Neutrino scattering
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany TAUP 2007, September 2007, Sendai, Japan Collective Flavor Oscillations Georg Raffelt,
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
The effect of turbulence upon supernova neutrinos Jim Kneller NC State University NOW 2010.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Damping of neutrino flavor conversion in the wake of the supernova shock wave by G.L. Fogli, E. Lisi, D. Montanino, A. Mirizzi Based on hep-ph/ :
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
1 Detecting Supernova Neutrinos X.-H. Guo Beijing Normal University.
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Multi-Messenger Astronomy AY 17 10/19/2011. Outline What is Multi-messenger astronomy? Photons Cosmic Rays Neutrinos Gravity-Waves Sample-Return.
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Melbourne Neutrino Theory Workshop, June ROLE OF DENSE MATTER IN COLLECTIVE NEUTRINO TRANSFORMATIONS Sergio Pastor (IFIC Valencia) in collaboration.
Atmospheric Neutrino Anomaly
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
1 The elusive neutrino Piet Mulders Vrije Universiteit Amsterdam Fysica 2002 Groningen.
The neutrons detection involves the use of gadolinium which has the largest thermal neutron capture cross section ever observed. The neutron capture on.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
SUPERNOVA NEUTRINOS AT ICARUS
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
M. Selvi – SN detection with LVD – NNN‘06 Supernova  detection with LVD Marco Selvi – INFN Bologna, Large Volume LNGS.
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
Wednesday, Feb. 14, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #6 Wednesday, Feb. 14, 2007 Dr. Jae Yu 1.Neutrino Oscillation Formalism 2.Neutrino.
ASTROPHYSICAL NEUTRINOS STEEN HANNESTAD, Aarhus University GLA2011, JYVÄSKYLÄ e    
Analysis of Alpha Background in SNO Data Using Wavelet Analysis
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
Application of neutrino spectrometry
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
Neutrinos: What we’ve learned and what we still want to find out Jessica Clayton Astronomy Club November 10, 2008.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
S.P.Mikheyev INR RAS1 ``Mesonium and antimesonium’’ Zh. Eksp.Teor. Fiz. 33, 549 (1957) [Sov. Phys. JETP 6, 429 (1957)] translation B. Pontecorvo.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
Solar Neutrinos By Wendi Wampler. What are Neutrinos? Neutrinos are chargeless, nearly massless particles Neutrinos are chargeless, nearly massless particles.
Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct.
Solar Neutrino Results from SNO
A black hole: The ultimate space-time warp Ch. 5.4 A black hole is an accumulation of mass so dense that nothing can escape its gravitational force, not.
Life (and Death) as a High Mass Star. A “high-mass star” is one with more than about A) the mass of the Sun B) 2 times the mass of the Sun C) 4 times.
STELLAR EVOLUTION – THE STANDARD SOLAR MODEL AND SOLAR NEUTRINOS – MARIE ZECH.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
Georg Raffelt, MPI Physics, Munich Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014 Crab NebulaNeutrinos in Astrophysics and Cosmology Introductory.
Solar neutrino physics The core of the Sun reaches temperatures of  15.5 million K. At these temperatures, nuclear fusion can occur which transforms 4.
Supernova Neutrinos Physics Opportunities with Flavor Oscillations
Astrophysical Constraints on Secret Neutrino Interactions
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
SOLAR ATMOSPHERE NEUTRINOS
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
Neutrino astronomy Measuring the Sun’s Core
SOLAR ATMOSPHERE NEUTRINOS
Solar Neutrino Problem
Big World of Small Neutrinos
Neutrinos as probes of ultra-high energy astrophysical phenomena
Pauli´s new particle * nt nm ne e m t Beta-Decay Pa 234 b (electron)
Neutrino astrophysics
The neutrino mass hierarchy and supernova n
1930: Energy conservation violated in β-decay
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Low Energy Neutrino Astrophysics
Presentation transcript:

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay SN 1006 Georg Raffelt, Max-Planck-Institut für Physik, München 25 ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Frontiers of Low-Energy Neutrino Astronomy: Earth, Sun and Supernovae

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Where do Neutrinos Appear in Nature? Astrophysical Accelerators Soon ? Cosmic Big Bang (Today 330 /cm 3 ) Indirect Evidence Indirect Evidence Nuclear Reactors Particle Accelerators Particle Accelerators Earth Atmosphere (Cosmic Rays) Sun Supernovae (Stellar Collapse) SN 1987A SN 1987A Earth Crust (NaturalRadioactivity)

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Neutrinos from nuclear reactions: Energies 1 20 MeV Beam dump neutrinos High-energy protons hit High-energy protons hit matter or photons matter or photons Produce secondary Produce secondary Neutrinos from pion Neutrinos from pion decay decay e e e e Energies GeV Energies GeV Quasi thermal sources Supernova: T ~ few MeV Big-Bang Neutrinos: Very small energies today (cosmic red shift) Like matter today Where do Neutrinos Appear in Nature?

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Low-energy neutrino astronomy (including geo-neutrinos) Energies ~ 1 50 MeV High-energy neutrino astronomy Closely related to cosmic-ray physics Long-baseline neutrino oscillation experiments with Reactor neutrinos Reactor neutrinos Neutrino beams from Neutrino beams from accelerators accelerators Where do Neutrinos Appear in Nature?

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Hans Bethe ( , Nobel prize 1967) Thermonuclear reaction chains (1938) Neutrinos from the Sun Solar radiation: 98 % light 2 % neutrinos 2 % neutrinos At Earth 66 billion neutrinos/cm 2 sec Reaction-chains Energy 26.7 MeV Helium

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Bethes Classic Paper on Nuclear Reactions in Stars No neutrinos from nuclear reactions in 1938 …

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Gamow & Schoenberg, Phys. Rev. 58:1117 (1940)

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Sun Glasses for Neutrinos? Several light years of lead Several light years of lead needed to shield solar needed to shield solar neutrinos neutrinos Bethe & Peierls 1934: Bethe & Peierls 1934: … this evidently means … this evidently means that one will never be able that one will never be able to observe a neutrino. to observe a neutrino. 8.3 light minutes

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay First Detection ( ) Fred Reines (1918 – 1998) Nobel prize 1995 Clyde Cowan (1919 – 1974) Detector prototype Anti-ElectronNeutrinosfromHanford Nuclear Reactor 3 Gammas in coincidence pp nn CdCd e+e+e+e+ e+e+e+e+ e-e-e-e- e-e-e-e-

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Inverse beta decay of chlorine 600 tons of Perchloroethylene Homestake solar neutrino Homestake solar neutrino observatory ( ) observatory ( ) First Measurement of Solar Neutrinos

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Cherenkov Effect Water Elastic scattering or CC reaction Neutrino LightLight Cherenkov Ring Electron or Muon (Charged Particle) Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Super-Kamiokande: Sun in the Light of Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay 2002 Physics Nobel Prize for Neutrino Astronomy Ray Davis Jr. ( ) Masatoshi Koshiba (*1926) for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos particular for the detection of cosmic neutrinos

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay John Bahcall Raymond Davis Jr Missing Neutrinos from the Sun Homestake Chlorine 7 Be 8B8B8B8B CNO Measurement (1970 – 1995) Calculation of expected experimental counting rate from various source reactions

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Neutrino Flavor Oscillations Two-flavor mixing Bruno Pontecorvo (1913 – 1993) Invented nu oscillations Each mass eigenstate propagates as with Phase difference implies flavor oscillations OscillationLength sin 2 (2 ) Probability e Probability e z

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Missing Neutrinos from the Sun Homestake 7 Be 8B8B8B8B CNO Chlorine Gallex/GNOSAGE CNO pp 8B8B8B8B Gallium Electron-Neutrino Detectors (Super-)Kamiokande 8B8B8B8B Water e + e e + e e + e e + e SNO 8B8B8B8B e + d p + p + e e + d p + p + e Heavy Water 8B8B8B8B + d p + n + + d p + n + Heavy Water All Flavors SNO 8B8B8B8B Water + e + e + e + e

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Three-Flavor Neutrino Parameters CP-violating phase CP-violating phase Solar Atmospheric CHOOZSolar/KamLAND 2 ranges hep-ph/ Atmospheric/K2K e e 1 SunNormal2 3 Atmosphere e e 1 SunInverted2 3 Atmosphere Tasks and Open Questions Precision for 12 and 23 Precision for 12 and 23 How large is 13 ? How large is 13 ? CP-violating phase ? CP-violating phase ? Mass ordering ? Mass ordering ? (normal vs inverted) (normal vs inverted) Absolute masses ? Absolute masses ? (hierarchical vs degenerate) (hierarchical vs degenerate) Dirac or Majorana ? Dirac or Majorana ?

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Solar Neutrino Spectrum 7-Be line measured by Borexino (2007)

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Solar Neutrino Spectroscopy with BOREXINO Neutrino electron scattering Neutrino electron scattering Liquid scintillator technology Liquid scintillator technology (~ 300 tons) (~ 300 tons) Low energy threshold Low energy threshold (~ 60 keV) (~ 60 keV) Online since 16 May 2007 Online since 16 May 2007 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Expected without flavor oscillationsExpected without flavor oscillations 75 ± 4 counts/100t/d Expected with oscillationsExpected with oscillations 49 ± 4 counts/100t/d BOREXINO result (May 2008)BOREXINO result (May 2008) 49 ± 3 stat ± 4 sys cnts/100t/d arXiv: (25 May 2008) arXiv: (25 May 2008)

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Next Steps in Borexino Collect more statistics of Beryllium line Collect more statistics of Beryllium line Seasonal variation of rate Seasonal variation of rate (Earth orbit eccentricity) (Earth orbit eccentricity) Measure neutrinos from the CNO reaction chain Measure neutrinos from the CNO reaction chain Information about solar metal abundance Information about solar metal abundance Measure geo-neutrinos Measure geo-neutrinos (from natural radioactivity in the Earth crust) (from natural radioactivity in the Earth crust) Approx events/year Approx events/year Main background: Reactors ~ 20 events/year Main background: Reactors ~ 20 events/year

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Geo Neutrinos: Why and What? We know surprisingly little about the interior of the Earth: Deepest bore hole ~ 12 km Deepest bore hole ~ 12 km Samples from the crust are Samples from the crust are available for chemical analysis available for chemical analysis (e.g. vulcanoes) (e.g. vulcanoes) Seismology reconstructs density Seismology reconstructs density profile throughout the Earth profile throughout the Earth Heat flow from measured Heat flow from measured temperature gradients TW temperature gradients TW (BSE canonical model, based on (BSE canonical model, based on cosmochemical arguments, cosmochemical arguments, predicts ~ 19 TW from crust and predicts ~ 19 TW from crust and mantle, none from core) mantle, none from core) Neutrinos escape freely Neutrinos escape freely Carry information about chemical composition, radioactive heat production, Carry information about chemical composition, radioactive heat production, or even a putative natural reactor at the core or even a putative natural reactor at the core

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Expected Geo Neutrino Fluxes S. Dye, Talk 5/25/2006 Baltimore

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Geo Neutrinos Predicted geo neutrino flux Reactor background KamLAND scintillator detector (1 kton)

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Kamland Observation of Geoneutrinos First tentative observation of geoneutrinos First tentative observation of geoneutrinos at Kamland in 2005 (~ 2 sigma effect) at Kamland in 2005 (~ 2 sigma effect) Very difficult because of large background Very difficult because of large background of reactor neutrinos of reactor neutrinos (is main purpose for neutrino oscillations) (is main purpose for neutrino oscillations)

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Sanduleak Large Magellanic Cloud Distance 50 kpc ( light years) Tarantula Nebula Supernova 1987A 23 February 1987 Supernova 1987A 23 February 1987 Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Supernova Neutrinos 20 Jahre nach SN 1987A Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Helium-burning star HeliumBurning HydrogenBurning Main-sequence star Hydrogen Burning Onion structure Degenerate iron core: 10 9 g cm g cm 3 T K T K M Fe 1.5 M sun M Fe 1.5 M sun R Fe 8000 km R Fe 8000 km Collapse (implosion) Stellar Collapse and Supernova Explosion

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Collapse (implosion) Explosion Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Stellar Collapse and Supernova Explosion

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Gravitational binding energy Gravitational binding energy E b erg 17% M SUN c 2 E b erg 17% M SUN c 2 This shows up as This shows up as 99% Neutrinos 99% Neutrinos 1% Kinetic energy of explosion 1% Kinetic energy of explosion (1% of this into cosmic rays) (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy 0.01% Photons, outshine host galaxy Neutrino luminosity Neutrino luminosity L erg / 3 sec L erg / 3 sec L SUN L SUN While it lasts, outshines the entire While it lasts, outshines the entire visible universe visible universe Stellar Collapse and Supernova Explosion

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Neutrino Signal of Supernova 1987A Within clock uncertainties, signals are contemporaneous Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty 50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay The Energy-Loss Argument Neutrinosphere Neutrino Neutrino diffusion diffusion Late-time signal most sensitive observable Emission of very weakly interacting particles would steal energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.) not sensitive to volume energy loss.) Volume emission Volume emission of novel particles of novel particles SN 1987A neutrino signal

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Do Neutrinos Gravitate? Neutrinos arrive a few hours earlier than photons Early warning (SNEWS) SN 1987A: Transit time for photons and neutrinos equal to within ~ 3h Equal within ~ Shapiro time delay for particles moving in a gravitational potential Longo, PRL 60:173,1988 Krauss & Tremaine, PRL 60:176,1988 Proves directly that neutrinos respond to gravity in the usual way Proves directly that neutrinos respond to gravity in the usual way because for photons gravitational lensing already proves this point because for photons gravitational lensing already proves this point Cosmological limits N 1 much worse test of neutrino gravitation Cosmological limits N 1 much worse test of neutrino gravitation Provides limits on parameters of certain non-GR theories of gravitation Provides limits on parameters of certain non-GR theories of gravitation

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Neutrino-Driven Delayed Explosion Picture adapted from Janka, astro-ph/ Picture adapted from Janka, astro-ph/ Neutrino heating increases pressure behind shock front

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Standing Accretion Shock Instability (SASI) Mezzacappa et al., Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Large Detectors for Supernova Neutrinos Super-Kamiokande (10 4 ) KamLAND (400) MiniBooNE(200) In brackets events for a fiducial SN at distance 10 kpc LVD (400) Borexino (100) IceCube (10 6 ) Baksan Baksan (100) (100)

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Simulated Supernova Signal at Super-Kamiokande Simulation for Super-Kamiokande SN signal at 10 kpc, based on a numerical Livermore model [Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216] AccretionPhase Kelvin-Helmholtz Cooling Phase

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay IceCube Neutrino Telescope at the South Pole 1 km 3 antarctic ice, instrumented 1 km 3 antarctic ice, instrumented with 4800 photomultipliers with 4800 photomultipliers 40 of 80 strings installed (2008) 40 of 80 strings installed (2008) Completion until 2011 foreseen Completion until 2011 foreseen

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay IceCube as a Supernova Neutrino Detector Each optical module (OM) picks up Cherenkov light from its neighborhood. SN appears as correlated noise. About 300 About 300 Cherenkov Cherenkov photons photons per OM per OM from a SN from a SN at 10 kpc at 10 kpc Noise Noise per OM per OM < 260 Hz < 260 Hz Total of Total of 4800 OMs 4800 OMs in IceCube in IceCube IceCube SN signal at 10 kpc, based on a numerical Livermore model [Dighe, Keil & Raffelt, hep-ph/ ] Method first discussed by Pryor, Roos & Webster, Pryor, Roos & Webster, ApJ 329:355 (1988) ApJ 329:355 (1988) Halzen, Jacobsen & Zas Halzen, Jacobsen & Zas astro-ph/ astro-ph/

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Neutrino Oscillations in Matter Level crossing possible in a medium with a gradient (MSW effect) Level crossing possible in a medium with a gradient (MSW effect) - For solar nus large flavor conversion anyway due to large mixing - For solar nus large flavor conversion anyway due to large mixing - Still important for 13-oscillations in supernova envelope - Still important for 13-oscillations in supernova envelope Breaks degeneracy between and /2 (dark vs light side) Breaks degeneracy between and /2 (dark vs light side) - 12 mass ordering for solar nus established - 12 mass ordering for solar nus established - 13 mass ordering (normal vs inverted) at future LBL or SN - 13 mass ordering (normal vs inverted) at future LBL or SN Discriminates against sterile nus in atmospheric oscillations Discriminates against sterile nus in atmospheric oscillations CP asymmetry in LBL, to be distinguished from intrinsic CP violation CP asymmetry in LBL, to be distinguished from intrinsic CP violation Prevents flavor conversion in a SN core and within shock wave Prevents flavor conversion in a SN core and within shock wave Strongly affects sterile nu production in SN or early universe Strongly affects sterile nu production in SN or early universe Lincoln Wolfenstein f Z W, Z f Neutrinos in a medium suffer flavor-dependent refraction (PRD 17:2369, 1978)

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay H- and L-Resonance for MSW Oscillations R. Tomàs, M. Kachelriess, G. Raffelt, A. Dighe, H.-T. Janka & L. Scheck: Neutrino signatures of supernova forward and reverse shock propagation [astro-ph/ ] Resonance density for Resonance

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Shock-Wave Propagation in IceCube Choubey, Harries & Ross, Probing neutrino oscillations from supernovae shock waves via the IceCube detector, astro-ph/ Normal Hierarchy Inverted Hierarchy No shockwave Inverted Hierarchy Forward shock Inverted Hierarchy Forward & reverse shock

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Collective Effects in Neutrino Flavor Oscillations Collapsed supernova core or accretion torus of merging neutron stars: Neutrino flux very dense: Up to cm 3 Neutrino flux very dense: Up to cm 3 Neutrino-neutrino interaction energy Neutrino-neutrino interaction energy much larger than vacuum oscillation frequency much larger than vacuum oscillation frequency Large matter effect of neutrinos on each Large matter effect of neutrinos on each other other Non-linear oscillation effects Non-linear oscillation effects Assume 80% anti-neutrinos Assume 80% anti-neutrinos Vacuum oscillation frequency Vacuum oscillation frequency = 0.3 km 1 = 0.3 km 1 Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km) energy at nu sphere (r = 10 km) = km 1 = km 1 Falls off approximately as r 4 Falls off approximately as r 4 (geometric flux dilution and nus (geometric flux dilution and nus become more co-linear) become more co-linear)

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Spectral Split (Stepwise Spectral Swapping) Fogli, Lisi, Marrone & Mirizzi, arXiv: Initial fluxes at nu sphere Aftercollectivetrans-formation For explanation see Raffelt & Smirnov arXiv: arXiv: arXiv: arXiv: Duan, Fuller, Carlson & Qian arXiv: arXiv: arXiv: arXiv:

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Mass Hierarchy at Extremely Small Theta-13 Dasgupta, Dighe & Mirizzi, arXiv: Ratio of spectra in two water Cherenkov detectors (0.4 Mton), one shadowed by the Earth, the other not Using Earth matter effects to diagnose transformations

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Collective SN neutrino oscillations (I) Bipolar collective transformations important, even for dense matter Duan, Fuller & Qian Duan, Fuller & Qian astro-ph/ astro-ph/ Numerical simulations Including multi-angle effects Including multi-angle effects Discovery of spectral splits Discovery of spectral splits Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian astro-ph/ , astro-ph/ , Pendulum in flavor space Pendulum in flavor space Collective pair annihilation Collective pair annihilation Pure precession mode Pure precession mode Hannestad, Raffelt, Sigl & Wong Hannestad, Raffelt, Sigl & Wong astro-ph/ astro-ph/ Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian astro-ph/ astro-ph/ Self-maintained coherence vs. self-induced decoherence caused by multi-angle effects Sawyer, hep-ph/ , Sawyer, hep-ph/ , Raffelt & Sigl, hep-ph/ Raffelt & Sigl, hep-ph/ Esteban-Pretel, Pastor, Tomàs, Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv: Raffelt & Sigl, arXiv: Theory of spectral splits in terms of adiabatic evolution in rotating frame Raffelt & Smirnov, Raffelt & Smirnov, arXiv: , arXiv: , Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian arXiv: , arXiv: , Independent numerical simulations Fogli, Lisi, Marrone & Mirizzi Fogli, Lisi, Marrone & Mirizzi arXiv: arXiv:

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Collective SN neutrino oscillations (II) Second-order mu-tau refractive effect important in three-flavor context Esteban-Pretel, Pastor, Tomàs, Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv: Raffelt & Sigl, arXiv: Three-flavor effects in O-Ne-Mg SNe on neutronization burst (MSW-prepared spectral double split) Duan, Fuller, Carlson & Qian, Duan, Fuller, Carlson & Qian, arXiv: arXiv: Dasgupta, Dighe, Mirrizzi & Raffelt, Dasgupta, Dighe, Mirrizzi & Raffelt, arXiv: arXiv: Theory of three-flavor collective oscillations Dasgupta & Dighe, Dasgupta & Dighe, arXiv: arXiv: Identifying the neutrino mass hierarchy at extremely small Theta-13 Dasgupta, Dighe & Mirizzi, Dasgupta, Dighe & Mirizzi, arXiv: arXiv: Formulation for non-spherical geometry Dasgupta, Dighe, Mirizzi & Raffelt Dasgupta, Dighe, Mirizzi & Raffelt arXiv: arXiv: Many theoretical questions for this neutrino many-body system remain unresolved !

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Core-Collapse SN Rate in the Milky Way Gamma rays from 26 Al (Milky Way) Historical galactic SNe (all types) SN statistics in external galaxies No galactic neutrino burst Core-collapse SNe per century van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Diehl et al. (2006) Tammann et al. (1994) Strom (1994) 90 % CL (25 y obserservation) Alekseev et al. (1993) References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro- ph/ Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekeseev et al., JETP 77 (1993) 339 and my update.

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay SuperNova Early Warning System (SNEWS) Neutrino observation can alert astronomers several hours in advance to a supernova. To avoid false alarms, require alarm from at least two experiments. BNL Super-K Alert Others ? LVD IceCube Supernova 1987A Early Light Curve

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay Experimental Limits on Relic Supernova Neutrinos Cline, astro-ph/ Upper-limit flux of Upper-limit flux of Kaplinghat et al., Kaplinghat et al., astro-ph/ astro-ph/ Integrated 54 cm -2 s -1 Integrated 54 cm -2 s -1 Super-K upper limit Super-K upper limit 29 cm -2 s -1 for 29 cm -2 s -1 for Kaplinghat et al. spectrum Kaplinghat et al. spectrum [hep-ex/ ] [hep-ex/ ]

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay DSNB Measurement with Neutron Tagging Beacom & Vagins, hep-ph/ [Phys. Rev. Lett., 93:171101, 2004] Pushing the boundaries of neutrino astronomy to cosmological distances Future large-scale scintillator detectors (e.g. LENA with 50 kt) Inverse beta decay reaction tagged Inverse beta decay reaction tagged Location with smaller reactor flux Location with smaller reactor flux (e.g. Pyhäsalmi in Finland) could (e.g. Pyhäsalmi in Finland) could allow for lower threshold allow for lower threshold

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay LAGUNA - Funded FP7 Design Study Large Apparati for Grand Unification and Neutrino Astrophysics (see also arXiv: )

Georg Raffelt, Max-Planck-Institut für Physik, München25ème Journée Thématique de lIPN, 3 Juin 2008, Orsay The Red Supergiant Betelgeuse (Alpha Orionis) First resolved image of a star other than Sun Distance(Hipparcos) 130 pc (425 lyr) If Betelgeuse goes Supernova: neutrino events in Super-Kamiokande neutrino events in Super-Kamiokande neutron events per day from Silicon-burning phase neutron events per day from Silicon-burning phase (few days warning!), need neutron tagging (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/ ] [Odrzywolek, Misiaszek & Kutschera, astro-ph/ ]