Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, 03.09.2006 M. Fleischhauer.

Slides:



Advertisements
Similar presentations
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Advertisements

Bose-Einstein Condensation Ultracold Quantum Coherent Gases.
Many-body dynamics of association in quantum gases E. Pazy, I. Tikhonenkov, Y. B. Band, M. Fleischhauer, and A. Vardi.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
CHAPTER 6 ELECTRONIC STRUCTURE OF ATOMS. CHAPTER 6 TOPICS THE QUANTUM MECHANICAL MODEL OF THE ATOM USE THE MODEL IN CHAPTER 7 TO EXPLAIN THE PERIODIC.
1 Cold molecules Mike Tarbutt. 2 Outline Lecture 1 – The electronic, vibrational and rotational structure of molecules. Lecture 2 – Transitions in molecules.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
P460 - Spin1 Spin and Magnetic Moments (skip sect. 10-3) Orbital and intrinsic (spin) angular momentum produce magnetic moments coupling between moments.
1 Goran Sljuka Fractional Quantum Hall Effect. 2 History of Hall Effect Hall Effect (Integer ) Quantum Hall Effect Fractional Hall Effect HEMT Topological.
Fractional topological insulators
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Many-body dynamics of association in quantum gases E. Pazy, I. Tikhonenkov, Y. B. Band, M. Fleischhauer, and A. Vardi.
Quantum Hall Effect Jesse Noffsinger Group Meeting Talk (As required by the Governor of the State of California) April 17, 2007.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Quantum conductance I.A. Shelykh St. Petersburg State Polytechnical University, St. Petersburg, Russia International Center for Condensed Matter Physics,
P460 - many particles1 Many Particle Systems can write down the Schrodinger Equation for a many particle system with x i being the coordinate of particle.
Topological Insulators and Beyond
P460 - Spin1 Spin and Magnetic Moments (skip sect. 10-3) Orbital and intrinsic (spin) angular momentum produce magnetic moments coupling between moments.
6. Second Quantization and Quantum Field Theory
Ana Maria Rey March Meeting Tutorial May 1, 2014.
Atomic Orbitals, Electron Configurations, and Atomic Spectra
Introduction to fractional quantum Hall effect Milica V. Milovanović Institute of Physics Belgrade Scientific Computing Laboratory (Talk at Physics Faculty,
Composite Fermion Groundstate of Rashba Spin-Orbit Bosons Alex Kamenev Fine Theoretical Physics Institute, School of Physics & Astronomy, University of.
Lecture 21. Grand canonical ensemble (Ch. 7)
Predoc’ school, Les Houches,september 2004
Phys 102 – Lecture 26 The quantum numbers and spin.
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
Spin Electronic charge in motion - A current loop behaves as a magnetic dipole and has a magnetic moment. - Note the current direction is opposite to the.
Spin-statistics theorem As we discussed in P301, all sub-atomic particles with which we have experience have an internal degree of freedom known as intrinsic.
Introduction to even-denominator FQHE: composite fermions Tejas Deshpande Journal club: 11 November, 2014.
Strong correlations and quantum vortices for ultracold atoms in rotating lattices Murray Holland JILA (NIST and Dept. of Physics, Univ. of Colorado-Boulder)
M.I. Dyakonov University of Montpellier II, CNRS, France One-dimensional model for the Fractional Quantum Hall Effect Outline:  The FQHE problem  Laughlin.
History of superconductivity
Lecture IV Bose-Einstein condensate Superfluidity New trends.
B.E.C.(Bose-Einstein Condensation) 발표자 : 이수룡 (98).
Chapter 35 Quantum Mechanics of Atoms. S-equation for H atom 2 Schrödinger equation for hydrogen atom: Separate variables:
1 Manipulation of Artificial Gauge Fields for Ultra-cold Atoms for Ultra-cold Atoms Shi-Liang Zhu ( Shi-Liang Zhu ( 朱 诗 亮 Laboratory.
Ady Stern (Weizmann) Papers: Stern & Halperin , PRL
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Bose-Einstein Condensates The Coldest Stuff in the Universe Hiro Miyake Splash! November 17, 2012.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
The Classical Hall effect Reminder: The Lorentz Force F = q[E + (v  B)]
A Review of Bose-Einstein Condensates MATTHEW BOHMAN UNIVERSITY OF WASHINGTON MARCH 7,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Agenda Brief overview of dilute ultra-cold gases
Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009 Intoduction to topological order and topologial quantum computation.
Arnau Riera, Grup QIC, Universitat de Barcelona Universität Potsdam 10 December 2009 Simulation of the Laughlin state in an optical lattice.
Relativistic Quantum Mechanics
Department of Electronics
Fractional Berry phase effect and composite particle hole liquid in partial filled LL Yizhi You KITS, 2017.
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Atomic BEC in microtraps: Heisenberg microscopy of Zitterbewegung
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
QHE discovered by Von Klitzing in 1980
Chapter 7 Atomic Physics.
(As required by the Governor of the State of California)
Spin and Magnetic Moments (skip sect. 10-3)
One-Dimensional Bose Gases with N-Body Attractive Interactions
Topological Order and its Quantum Phase Transition
7. Ideal Bose Systems Thermodynamic Behavior of an Ideal Bose Gas
Quantum Hall Effect in a Spinning Disk Geometry
FSU Physics Department
QM2 Concept test 3.1 Choose all of the following statements that are correct about bosons. (1) The spin of a boson is an integer. (2) The overall wavefunction.
Ady Stern (Weizmann) The quantum Hall effects – introduction
QM2 Concept test 5.1 There are three distinguishable particles with the same mass in a one dimensional infinite square well. The single particle stationary.
Presentation transcript:

Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, M. Fleischhauer

Kaiserslautern, April 2006 quantum Hall history discovery: 1980 Nobel prize: 1985 K. v. Klitzing H. Störmer R. Laughlin D. Tsui discovery: 1982 Nobel prize: 1998 IQHE FQHE

Kaiserslautern, April 2006 classical Hall effect (1880 E.H. Hall) Lorentz-force on electron: stationary current: Hall resistance: Dirac flux quantum 2

Kaiserslautern, April 2006 Landau levels

Kaiserslautern, April D electrons in magnetic fields: Landau levels coordinate transformation: Hamiltonian: R X electron center of cyclotron motion radial vector of cyclotron motion commutation relations:

Kaiserslautern, April D electrons in magnetic fields: Landau levels mapping to oscillator: H = h  R² / 2 l² = h  ( a a + ½ ) cc m † Landau levels

Kaiserslautern, April D electrons in magnetic fields: Landau levels typical scales: length magnetic length energy cyclotron frequency

Kaiserslautern, April D electrons in magnetic fields: Landau levels degeneracy of Landau levels: center of cyclotron motion (X,Y) arbitrary  degeneracy 2D density of states (DOS) filling factor one state per area of cyclotron orbit # atoms / # flux quanta

Kaiserslautern, April D electrons in magnetic fields: Landau levels wavefunction of lowest Landau level (LLL) in symmetric gauge symmetric gauge Landau gauge introduce complex coordinate LLL analytic b

Kaiserslautern, April D electrons in magnetic fields: Landau levels angular momentum of Landau levels: eigenstates of n´ th Landau level: angular momentum states of LLL:

Kaiserslautern, April D electrons in magnetic fields: Landau levels j wavefunction:

Kaiserslautern, April 2006 Integer Quantum Hall effect

Kaiserslautern, April 2006 Integer Quantum Hall effect spinless (for simplicity) and noninteracting electrons: Pauli principle Slater determinant:

Kaiserslautern, April 2006 Integer Quantum Hall effect compressibility: at integer fillings:

Kaiserslautern, April 2006 Integer Quantum Hall effect Hall current: Heisenberg drift equations of cycoltron center no plateaus ?!

Kaiserslautern, April 2006 Integer Quantum Hall effect Hall plateaus: impurities gap ! impurities pin electrons to localized states  electrons in impurity states do not contribute to current gap  impurity states fill first

Kaiserslautern, April 2006 Fractional Quantum Hall effect

Kaiserslautern, April 2006 Fractional Quantum Hall effect Laughlin state: take e-e interaction into account generic wavefunction requirements wave function anstisymmetric eigenstate of angular momentum Coulomb repulsion  Jastrow-type of wave function Laughlin wave function

Kaiserslautern, April 2006 Fractional Quantum Hall effect angular momentum of Laughlin wave function and filling factor maximum single-particle angular momentum filling factor of Laughlin state

Kaiserslautern, April 2006 Fractional Quantum Hall effect fractional Hall plateaus: fractional Hall states are gapped = 1 = 1/3 = 1/5 = 1/7

Kaiserslautern, April 2006 composite particle picture of FQHE

Kaiserslautern, April 2006 composite particle = electron + m magnetic flux quanta composite particle picture of FQHE + =  composite fermion  composite boson effective magnetic field composite particle are anyons (fractional statistics) exist only in 2D

Kaiserslautern, April 2006 composite particle picture of FQHE some remarks about anyons: two-particle wave function exchange particles exchange particles a second time  in 3D: Boson Fermion 3D:no projected area in (xy) 2D always projected area in (xy) particles can pick up e.g. Aharanov-Bohm phase AB AB

Kaiserslautern, April 2006 composite particle picture of FQHE = 1 / m FQE (A) electron + flux quanta form composite boson 0 Bose condensation of composite bosons (B) electron + flux quanta form composite fermion IQHE for composite fermions 

Kaiserslautern, April 2006 composite particle picture of FQHE Jain hierarchy: experiment: FQHE also for composite fermion picture: since 

Kaiserslautern, April 2006 FQHE for interacting bosons FQHE for interacting bosons

Kaiserslautern, April 2006 FQHE for interacting bosons exact diagonalization  FQH effect for Laughlin state for point interaction composite fermions: boson + single flux quantum + = IQHE for composite fermions

Kaiserslautern, April 2006

effective magnetic fields in rotating traps

Kaiserslautern, April 2006 atoms in dark states |1>|2> |0> γ Ω Ω s p Δ Ω - D + adiabatic eigenstates: γ γ for dark states see e.g.: E. Arimondo, Progress in Optics XXXV (1996) dark state (no fluoresence): p s

Kaiserslautern, April 2006 R. Dum & M. Olshanii, PRL 76, 1788 (1996) transformation to local adiabatic basis:  gauge potential A + scalar potential |1>|2> |0> ΩΩ s p center of mass motion of atoms in dark states space-dependent dark states & atomic motion:

Kaiserslautern, April 2006 effective vector potential & magnetic field relative momentum vector difference of „center of mass“ of light beams relative orbital angular momentum needed ! (i) magnetic fields ΩΩ s p

Kaiserslautern, April 2006 magnetic fields: (a) vortex light beams G. Juzeliūnas and P.Öhberg, PRL 93, (2004) P. Öhberg, J. Ruseckas, G. Juzeliunas, M.F. PRA 73, (2006) external trap B V ratio of fields eff

Kaiserslautern, April 2006 magnetic fields: (b) shifted light beams x y z Quantum-Hall effect in non-cylindrical systems non-stationary situation possible (current in z) B V eff =    x xx

Kaiserslautern, April 2006 (ii) non-Abelian gauge fields J. Ruseckas, G. Juzeliunas, P. Öhberg, M.F. Phys.Rev.Lett (2005) more than one relevant adiabatic state ! TRIPOD scheme DD 12 Ω 2 x 2 vector matrix

Kaiserslautern, April 2006 magnetic monopole field Ω Ω Ω singularity lines  point singularity at the origin

Kaiserslautern, April 2006 summary motion of atom in space-dependent dark states  gauge potential A light beams with relative OAM  magnetic field B degenerate dark states  non-Abelian magnetic fields (monopoles,...) vortex light beams displaced beams (non-cylindrical geometry, currents)

Kaiserslautern, April 2006 quantum gases as many-body model systems lattice models: BCS – BEC crossover: Bose-Hubbard model; Bose-Fermi-H. model; spin models Feshbach resonances; fermionic superfluidity quantum-Hall physics: rotating traps vortices, vortex lattices; lowest Landau level

Kaiserslautern, April 2006 quantum gases as many-body model systems quantum-Hall physics: rotating traps vortices, vortex lattices; lowest Landau level

Kaiserslautern, April 2006 external trap B V magnetic fields: (a) vortex light beams ratio of fields eff

Kaiserslautern, April 2006 ultra-cold atoms & molecules many-body & solid-state physics instruments of quantum optics & coherent control

Kaiserslautern, April 2006 quantum-Hall physics Ф filling factor quantum effects: ~ 1  =  N # flux quanta ~ N # atoms (R / l ) m 2 hydrodynamics: >> 1 0