05 - FTP, Email, and DNS 2: Application Layer.

Slides:



Advertisements
Similar presentations
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Advertisements

1 Electronic Mail u Three major components: u user agents u mail servers u simple mail transfer protocol: SMTP u User Agent u a.k.a. “mail reader” u composing,
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Term B10.
2: Application Layer1 ECE5650 FTP, , DNS, and P2P.
Layer Aplikasi Risanuri Hidayat. Applications and application-layer protocols Application: communicating, distributed processes –e.g., , Web, P2P.
2: Application Layer1 FTP, SMTP and DNS. 2: Application Layer2 FTP: separate control, data connections r FTP client contacts FTP server at port 21, specifying.
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts, routers: –IP address (32 bit) - used for addressing datagrams –“name”, e.g., gaia.cs.umass.edu.
CPSC 441: FTP & SMTP1 Application Layer: FTP & Instructor: Carey Williamson Office: ICT Class.
Chapter 2: Application layer  2.1 Web and HTTP  2.2 FTP 2-1 Lecture 5 Application Layer.
Application Layer session 1 TELE3118: Network Technologies Week 12: DNS Some slides have been taken from: r Computer Networking: A Top Down Approach.
Electronic Mail and SMTP
2: Application Layer FTP, , and DNS. 2: Application Layer 2 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring.
1 Application layer r Electronic Mail m SMTP, POP3, IMAP r DNS r P2P file sharing.
Computer Communication Digital Communication in the Modern World Application Layer cont. DNS, SMTP
Esimerkki: Sähköposti. Lappeenranta University of Technology / JP, PH, AH Electronic Mail Three major components: user agents mail servers simple mail.
Simple Mail Transfer Protocol
Introduction 1 Lecture 7 Application Layer (FTP, ) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
Mail Server Fitri Setyorini. Content SMTP POP3 How mail server works IMAP.
Electronic Mail Three major components: SMTP user agents mail servers
Introduction 1-1 Chapter 2 FTP & Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 IC322 Fall.
2: Application Layer1 Chapter 2 Application Layer These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
Application Layer2-1 Chapter 2: outline 2.1 principles of network applications – app architectures – app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic.
CS 4396 Computer Networks Lab
SMTP, POP3, IMAP.
1 Application Layer Lecture 5 Imran Ahmed University of Management & Technology.
Trying out HTTP (client side) for yourself
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Lecture51 Administrative Things r Grader: Yona Raekow Office hours: Wed. 1pm-3pm or Th. 11am-1pm r Homeworks.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail m SMTP,
CSE401N: Computer Networks Lecture-5 Electronic Mail S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 2: Application.
Review: –How do we address “a network end-point”? –What services are provided by the Internet? –What is the network logical topology observed by a network.
Application Layer Protocols Simple Mail Transfer Protocol.
1 Computer Communication & Networks Lecture 27 Application Layer: Electronic mail and FTP Waleed.
Lecturer: Maxim Podlesny Sep CSE 473 File Transfer and Electronic in Internet.
DNS,SMTP,MIME.
Fall 2005 By: H. Veisi Computer networks course Olum-fonoon Babol Chapter 7 The Application Layer.
21-1 Last time □ Finish HTTP □ FTP This time □ SMTP ( ) □ DNS.
2: Application Layer1 Reminder r Homework 1 for Wednesday: m Problems #3-5,11,16,18-20 m Half of the problems will be graded r Feel free to send me .
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross.
1 DNS: Domain Name System People: many identifiers: m SSN, name, Passport # Internet hosts, routers: m IP address (32 bit) - used for addressing datagrams.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
File Transfer Protocol (FTP)
CSE 524: Lecture 6 Application layer protocols. Where we’re at… ● Internet architecture and history ● Internet protocols in practice ● Application layer.
CS 3830 Day 9 Introduction 1-1. Announcements r Quiz #2 this Friday r Demo prog1 and prog2 together starting this Wednesday 2: Application Layer 2.
Lecture 5: Web Continued 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
FTP, Mail and DNS protocols
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Slides based on Carey Williamson’s: FTP & SMTP1 File Transfer Protocol (FTP) r FTP client contacts FTP server at port 21, specifying TCP as transport protocol.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
World Wide Web r Most Web pages consist of: m base HTML page, and m several referenced objects addressed by a URL r URL has two components: host name and.
COMP 431 Internet Services & Protocols
Important r On Friday, could you ask students to please me their groups (one per group) for Project 2 so we can assign IP addresses. I’ll send.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Spring 2006 CPE : Application Layer_ 1 Special Topics in Computer Engineering Application layer: Some of these Slides are Based on Slides.
درس مهندسی اینترنت – مهدی عمادی مهندسی اینترنت برنامه‌نویسی در اینترنت 1 SMTP, FTP.
Last time Finish HTTP FTP.
05 - FTP, , and DNS 2: Application Layer.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
Chapter 2: Application layer
Chapter 2: Application layer
CSE 4213: Computer Networks II
The Application Layer: SMTP, FTP
FTP, SMTP and DNS 2: Application Layer.
Chapter 2 Application Layer
Presentation transcript:

05 - FTP, Email, and DNS 2: Application Layer

FTP: the File Transfer Protocol user interface client file transfer FTP server user at host local file system remote file system transfer file to/from remote host client/server model client: side that initiates transfer (either to/from remote) server: remote host ftp: RFC 959 ftp server: port 21 2: Application Layer

FTP: separate control, data connections client server TCP control connection port 21 TCP data connection port 20 FTP client contacts FTP server at port 21, specifying TCP as transport protocol Client obtains authorization over control connection Client browses remote directory by sending commands over control connection. When server receives a command for a file transfer, the server opens a TCP data connection to client After transferring one file, server closes connection. Server opens a second TCP data connection to transfer another file. Control connection: “out of band” FTP server maintains “state”: current directory, earlier authentication Because FTP uses a second connection to send control info, FTP is said to send control info out of band. 2: Application Layer

Sample commands sent as ASCII text over control channel Authentication USER: specify the user name to log in as PASS: specify the user’s password Exploring the files LIST: list the files for the given file specification CWD: change to the given directory Downloading and uploading files TYPE: set type to ASCII (A) or binary image (I) RETR: retrieve the given file STOR: upload the given file Closing the connection QUIT: close the FTP connection 2: Application Layer

Sample return codes status code and phrase (as in HTTP) 331 Username OK, password required 125 data connection already open; transfer starting 425 Can’t open data connection 452 Error writing file 2: Application Layer

Why two connections? Avoids need to mark the end of the data transfer Data transfer ends by closing of data connection Yet, the control connection stays up Aborting a data transfer Can abort a transfer without killing the control connection … which avoids requiring the user to log in again Done with an ABOR on the control connection Third-party file transfer between two hosts Data connection could go to a different host … by sending a different client IP address to the server E.g., user coordinates transfer between two servers But: this is rarely needed, and presents security issues 2: Application Layer

FTP, SFTP FTP is not secure – nothing is encrypted! SFTP uses SSH, and should be used instead of FTP when possible. SFTP i.e. SSH with FTP uses public key encryption. SSH2 uses the Diffie-Hellman key exchange (generate a secret key and then use symmetric key encryption). Each message is individually encrpyted. FTPS or FPT with SSL – uses certificates, public key cryptography and symmetric key – secure connection between client/server. SSH – UNIX SSL – Windows SSL – privacy and trust SSH – privacy and authentication 2: Application Layer

Electronic Mail Three major components: SMTP SMTP SMTP user agents user mailbox outgoing message queue user agent Three major components: user agents mail servers simple mail transfer protocol: SMTP User Agent a.k.a. “mail reader” composing, editing, reading mail messages e.g., Apple Mail, Outlook, elm outgoing, incoming messages stored on server mail server user agent SMTP mail server user agent SMTP mail server SMTP user agent user agent user agent 2: Application Layer

Electronic Mail: mail servers user agent Mail Servers mailbox contains incoming messages for user message queue of outgoing (to be sent) mail messages SMTP protocol between mail servers to send email messages client: sending mail server “server”: receiving mail server mail server user agent SMTP mail server user agent SMTP mail server SMTP user agent Note that the client and server are both mail-servers. user agent user agent 2: Application Layer

Scenario: Alice sends message to Bob 1) Alice uses UA to compose message and “to” bob@someschool.edu 2) Alice’s UA sends message to her mail server; message placed in message queue 3) Client side of SMTP opens TCP connection with Bob’s mail server 4) SMTP client sends Alice’s message over the TCP connection 5) Bob’s mail server places the message in Bob’s mailbox 6) Bob invokes his user agent to read message mail server mail server 1 user agent user agent 2 3 6 4 5 2: Application Layer

Electronic Mail: SMTP [RFC 2821] uses TCP to reliably transfer email message from client to server, port 25 direct transfer: sending server (client) to receiving server (server) three phases of transfer handshaking (greeting) transfer of messages closure command/response interaction commands: ASCII text response: status code and phrase messages must be in 7-bit ASCII 2: Application Layer

Sample SMTP interaction >telnet hamburger.edu 25 S: 220 hamburger.edu C: HELO crepes.fr S: 250 Hello crepes.fr, pleased to meet you C: MAIL FROM: <alice@crepes.fr> S: 250 alice@crepes.fr... Sender ok C: RCPT TO: <bob@hamburger.edu> S: 250 bob@hamburger.edu ... Recipient ok C: DATA S: 354 Enter mail, end with "." on a line by itself C: Do you like ketchup? C: How about pickles? C: . S: 250 Message accepted for delivery C: QUIT S: 221 hamburger.edu closing connection Handshake 2: Application Layer

SMTP: final words Comparison with HTTP: SMTP uses persistent connections SMTP requires message (header & body) to be in 7-bit ASCII SMTP server uses CRLF.CRLF to determine end of message Comparison with HTTP: HTTP: pull SMTP: push both have ASCII command/response interaction, status codes HTTP: each object encapsulated in its own response msg SMTP: multiple objects sent in multipart msg 2: Application Layer

Mail message format header body SMTP: protocol for exchanging email msgs RFC 822: standard for text message format: header lines, e.g., To: From: Subject: different from SMTP commands! body the “message”, ASCII characters only header blank line body 2: Application Layer

Message format: multimedia extensions MIME: Multipurpose Internet Mail Extension, RFC 2045, 2056 additional lines in msg header declare MIME content type From: alice@crepes.fr To: bob@hamburger.edu Subject: Picture of yummy crepe. MIME-Version: 1.0 Content-Transfer-Encoding: base64 Content-Type: image/jpeg base64 encoded data ..... ......................... ......base64 encoded data MIME version method used to encode data multimedia data type, subtype, parameter declaration encoded data 2: Application Layer

MIME types Content-Type: type/subtype; parameters Text example subtypes: plain, html Image example subtypes: jpeg, gif Audio example subtypes: basic (8-bit mu-law encoded), 32kadpcm (32 kbps coding) Video example subtypes: mpeg, quicktime Application other data that must be processed by reader before “viewable” example subtypes: msword, octet-stream 2: Application Layer

Multipart Type From: alice@crepes.fr To: bob@hamburger.edu Subject: Picture of yummy crepe. MIME-Version: 1.0 Content-Type: multipart/mixed; boundary=StartOfNextPart --StartOfNextPart Dear Bob, Please find a picture of a crepe. Content-Transfer-Encoding: base64 Content-Type: image/jpeg base64 encoded data ..... ......................... ......base64 encoded data Do you want the recipe? 2: Application Layer

Mail access protocols SMTP SMTP access protocol user agent user agent sender’s mail server receiver’s mail server SMTP: delivery/storage to receiver’s server Mail access protocol: retrieval from server POP: Post Office Protocol [RFC 1939] TCP, port 110 authorization (agent <-->server) and download IMAP: Internet Mail Access Protocol [RFC 1730] more features (more complex) manipulation of stored msgs on server HTTP: gmail, Hotmail , Yahoo! Mail, etc. 2: Application Layer

POP3 protocol authorization phase C: list transaction phase, client: S: +OK POP3 server ready C: user bob S: +OK C: pass hungry S: +OK user successfully logged on authorization phase client commands: user: declare username pass: password server responses +OK -ERR transaction phase, client: list: list message numbers retr: retrieve message by number dele: delete Quit Update phase- server deletes files. C: list S: 1 498 S: 2 912 S: . C: retr 1 S: <message 1 contents> C: dele 1 C: retr 2 C: dele 2 C: quit S: +OK POP3 server signing off 2: Application Layer

POP3 (more) and IMAP More about POP3 Previous example uses “download and delete” mode. Bob cannot re-read e-mail if he changes client “Download-and-keep”: copies of messages on different clients POP3 is stateless across sessions IMAP Keep all messages in one place: the server Allows user to organize messages in folders IMAP keeps user state across sessions: names of folders and mappings between message IDs and folder name Can also download only portions of a message e.g. headers 2: Application Layer

Web-based E-mail User agent: browser Use HTTP to send e-mail to server and receive e-mail from server. SMTP between servers. 2: Application Layer

DNS: Domain Name System people: many identifiers: SSN, name, passport # Internet hosts, routers: IP address (32 bit) - used for addressing datagrams “name”, e.g., www.yahoo.com - used by humans Q: map between IP address and name, and vice versa ? www.rose-hulman.edu  DNS  137.112.18.43

DNS DNS services Why not centralize DNS? hostname to IP address translation host aliasing Canonical, alias names mail server aliasing Core Internet function implemented as application layer protocol load distribution replicated Web servers: set of IP addresses for one canonical name Why not centralize DNS? single point of failure traffic volume distant centralized database maintenance doesn’t scale!

DNS name servers no server has all name-to-IP address mappings DNS is a distributed database implemented in hierarchy of many name servers no server has all name-to-IP address mappings local name servers: each ISP, company has local (default) name server host DNS query first goes to local name server authoritative name server: for a host: stores that host’s IP address, name can perform name/address translation for that host’s name 2: Application Layer

Distributed, Hierarchical Database Root DNS Servers com DNS servers org DNS servers edu DNS servers poly.edu DNS servers umass.edu yahoo.com amazon.com pbs.org client wants IP for www.amazon.com; 1st approx: client queries a root server to find com DNS server client queries com DNS server to get amazon.com DNS server client queries amazon.com DNS server to get IP address for www.amazon.com Com DNS servers  Top-level domain (TLD) severs Amazon DNS servers  authoritative DNS servers

DNS: Root name servers contacted by local name server that can not resolve name root name server: contacts authoritative name server if name mapping not known gets mapping returns mapping to local name server b USC-ISI Marina del Rey, CA l ICANN Marina del Rey, CA e NASA Mt View, CA f Internet Software C. Palo Alto, CA i NORDUnet Stockholm k RIPE London m WIDE Tokyo a NSI Herndon, VA c PSInet Herndon, VA d U Maryland College Park, MD g DISA Vienna, VA h ARL Aberdeen, MD j NSI (TBD) Herndon, VA 13 root name servers worldwide (actually > 80 using anycasting) Zonefile stored at a root server 2: Application Layer

authoritative name server Simple DNS example root name server host surf.eurecom.fr wants IP address of gaia.cs.umass.edu 1. contacts its local DNS server, dns.eurecom.fr 2. dns.eurecom.fr contacts root name server, if necessary 3. root name server contacts authoritative name server, dns.umass.edu, if necessary 2 4 3 5 local name server dns.eurecom.fr authoritative name server dns.cs.umass.edu 1 6 requesting host surf.eurecom.fr gaia.cs.umass.edu 2: Application Layer

DNS example Root name server: may not know authoritative name server may know intermediate name server: who to contact to find authoritative name server 2 6 7 3 local name server dns.eurecom.fr intermediate name server dns.umass.edu 4 5 1 8 authoritative name server dns.cs.umass.edu requesting host surf.eurecom.fr gaia.cs.umass.edu 2: Application Layer

DNS: iterated queries recursive query: iterated query: root name server recursive query: puts burden of name resolution on contacted name server heavy load? iterated query: contacted server replies with name of server to contact “I don’t know this name, but ask this server” iterated query 2 3 4 7 local name server dns.eurecom.fr intermediate name server dns.umass.edu 5 6 1 8 authoritative name server dns.cs.umass.edu requesting host surf.eurecom.fr gaia.cs.umass.edu 2: Application Layer

DNS: caching and updating records once (any) name server learns mapping, it caches mapping cache entries timeout (disappear) after some time If the TLD servers and intermediate DNS servers perform their functions correctly, the root servers will rarely be contacted. 2: Application Layer

RR format: (name, value, type, ttl) DNS records DNS: distributed db stores resource records (RR) RR format: (name, value, type, ttl) Type=A name is hostname value is IP address Type=CNAME name is alias name for some “canonical” (the real) name www.ibm.com is really servereast.backup2.ibm.com value is canonical name Type=NS name is domain (e.g. foo.com) value is IP address of authoritative name server for this domain Type=MX value is name of mailserver associated with name Use “nslookup” and “dig” to see RRs. 2: Application Layer