1 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Piri Reis University 2011-2012/ Physics -I.

Slides:



Advertisements
Similar presentations
Review Chap. 8 Momentum, Impulse, and Collisions
Advertisements

Chapter 7 Linear Momentum.
Linear Momentum and Second Newton’s Law Definition of momentum: Change in momentum: 2 nd Newton’s Law: Definition of acceleration: We can write 2 nd Newton’s.
Linear Momentum and Collisions
Impulse, Momentum and Collisions
Chapter 7 - Giancoli Momentum and Impulse.
Momentum and Collisions
Chapter 9 Linear Momentum
Chapter 7 Impulse and Momentum.
Linear Momentum and Collisions
Phy 211: General Physics I Chapter 9: Center of Mass & Linear Momentum Lecture Notes.
AP Physics Impulse and Momentum. Which do you think has more momentum?
Law of Conservation of Momentum. If the resultant external force on a system is zero, then the vector sum of the momentums of the objects will remain.
Collisions & Center of Mass Lecturer: Professor Stephen T. Thornton
Center of Mass and Linear Momentum
Copyright © 2009 Pearson Education, Inc. Chapter 9 Linear Momentum.
7-6 Inelastic Collisions
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 7 Momentum and Collisions. Momentum Newton’s Laws give a description of forces ○ There is a force acting or their isn’t ○ But what about in between.
Copyright © 2009 Pearson Education, Inc. Chapter 9 Linear Momentum.
Copyright © 2009 Pearson Education, Inc. PHY093 Lecture 2d Linear Momentum, Impulse and Collision 1.
Conservation of Momentum & Energy in Collisions. Given some information, & using conservation laws, we can determine a LOT about collisions without knowing.
Linear Momentum Chapter Opener. Caption: Conservation of linear momentum is another great conservation law of physics. Collisions, such as between billiard.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 7 Linear Momentum
Monday, Apr. 7, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #19 Monday, Apr. 7, 2008 Dr. Jaehoon Yu Linear Momentum.
Momentum and Its Conservation
1 PPMF102– Lecture 3 Linear Momentum. 2 Linear momentum (p) Linear momentum = mass x velocity Linear momentum = mass x velocity p = mv p = mv SI unit:
Chapter 7 Linear Momentum. Units of Chapter 7 Momentum and Its Relation to Force Conservation of Momentum Collisions and Impulse Conservation of Energy.
Linear Momentum. 5-1 Linear Momentum Linear Momentum, p – defined as mass x velocity The unit is kg·m/s A quantity used in collisions So a small object.
Chapter 7: Linear Momentum Linear momentum is: – the product of mass and velocity – Represented by the variable p – Equal to mv, where m is the mass of.
Linear Momentum Impulse & Collisions. What is momentum?  Momentum is a measure of how hard it is to stop or turn a moving object.  What characteristics.
Chapter 9 - Collisions Momentum and force Conservation of momentum
Chapter 6 Linear Momentum. Units of Chapter 6 Momentum and Its Relation to Force Conservation of Momentum Collisions and Impulse Conservation of Energy.
Linear Momentum. Units of Momentum Momentum and Its Relation to Force Conservation of Momentum Collisions and Impulse Conservation of Energy and Momentum.
Chapter 7 Linear Momentum.
Wednesday, Oct. 22, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #15 Wednesday, Oct. 22, 2002 Dr. Jaehoon Yu 1.Impulse.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 9 Physics, 4 th Edition James S. Walker.
Linear Momentum. 5-1 Linear Momentum Linear Momentum, p – defined as mass x velocity The unit is kgm/s A quantity used in collisions So a small object.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Impulse & Momentum Physics 11.
Chapter 7 Linear Momentum. Objectives: The student will be able to: Apply the laws of conservation of momentum and energy to problems involving collisions.
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Phys211C8 p1 Momentum everyday connotations? physical meaning the “true” measure of motion (what changes in response to applied forces) Momentum (specifically.
Chapter 9:Linear Momentum
© 2010 Pearson Education, Inc. Lecture Outline Chapter 6 College Physics, 7 th Edition Wilson / Buffa / Lou.
Collisions: Impulse and Momentum
Chapter 7 Linear Momentum and Impulse Notes © 2014 Pearson Education, Inc.
Ying Yi PhD Chapter 7 Impulse and Momentum 1 PHYS HCC.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 9 Physics, 4 th Edition James S. Walker.
Chapter 9:Linear Momentum
Chapter 7 Linear Momentum
Today: (Ch. 7) Momentum and Impulse Conservation of Momentum Collision.
Chapter 7 Linear Momentum.
Center of Mass and Linear Momentum
Momentum, impulse and yet another conservation principle
Physics: Principles with Applications, 6th edition
Linear Momentum and Collisions
Linear Momentum and Second Newton’s Law
Chapter 7 Linear Momentum.
Lecture Outline Chapter 9 Physics, 4th Edition James S. Walker
LINEAR MOMENTUM & COLLISIONS
IMPULSE AND MOMENTUM When ever things collide, I’ve heard,
Linear Momentum.
Chapter 7 Linear Momentum
Lecture Outline Chapter 9 Physics, 4th Edition James S. Walker
Physics: Principles with Applications, 6th edition
Chapter 9 : Linear Momentum
Lecture Outline Chapter 9 Physics, 4th Edition James S. Walker
Physics: Principles with Applications, 6th edition
Presentation transcript:

1 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Piri Reis University / Physics -I

2 Piri Reis University Fall Semester Physics -I Chapter 9 Linear Momentum

3 Piri Reis University Lecture IX I. Momentum and Its Relation to Force II. Conservation of Momentum III. Collisions and Impulse IV. Conservation of Energy and Momentum in Collisions V. Elastic Collisions in One Dimension VI. Inelastic Collisions VII. Collisions in Two or Three Dimensions VIII. Center of Mass (CM) IX. CM for the Human Body X. Center of Mass and Translational Motion

4 I. Momentum and Its Relation to Force Momentum is a vector symbolized by the symbol p, and is defined as The rate of change of momentum is equal to the net force: This can be shown using Newton’s second law.

5 II. Conservation of Momentum During a collision, measurements show that the total momentum does not change:

6 More formally, the law of conservation of momentum states: The total momentum of an isolated system of objects remains constant. II. Conservation of Momentum

7 Momentum conservation works for a rocket as long as we consider the rocket and its fuel to be one system, and account for the mass loss of the rocket. II. Conservation of Momentum

8 Ex.1(II) A 95-kg halfback moving at on an apparent breakaway for a touchdown is tackled from behind. When he was tackled by an 85-kg cornerback running at in the same direction, what was their mutual speed immediately after the tackle?

9 Ex. 1The tackle will be analyzed as a one-dimensional momentum conserving situation. Let “A” represent the halfback, and “B” represent the tackling cornerback.

10 Ex. 2 (II) A kg baseball pitched at 39.0 m/s is hit on a horizontal line drive straight back toward the pitcher at 52.0 m/s. If the contact time between bat and ball is 3.00 x s, calculate the average force between the ball and bat during contact

11 Answer to EX. 2 Choose the direction from the batter to the pitcher to be the positive direction. Calculate the average force from the change in momentum of the ball.

12 III. Collisions and Impulse During a collision, objects are deformed due to the large forces involved. Since, we can write The definition of impulse:

13 Since the time of the collision is very short, we need not worry about the exact time dependence of the force, and can use the average force. III. Collisions and Impulse

14 The impulse tells us that we can get the same change in momentum with a large force acting for a short time, or a small force acting for a longer time. This is why you should bend your knees when you land; why airbags work; and why landing on a pillow hurts less than landing on concrete. III. Collisions and Impulse

15 Ex. 2 (II) A golf ball of mass kg is hit off the tee at a speed of 45 m/s. The golf club was in contact with the ball for 3.5 x s. Find (a) the impulse imparted to the golf ball, and (b) the average force exerted on the ball by the golf club.

16 Ex. 2(a)The impulse is the change in momentum. The direction of travel of the struck ball is the positive direction.

17 Ex. 2(a) The average force is the impulse divided by the interaction time.

18 IV. Conservation of Energy and Momentum in Collisions Momentum is conserved in all collisions. Collisions in which kinetic energy is conserved as well are called elastic collisions, and those in which it is not are called inelastic.

19 V. Elastic Collisions in One Dimension Here we have two objects colliding elastically. We know the masses and the initial speeds. Since both momentum and kinetic energy are conserved, we can write two equations. This allows us to solve for the two unknown final speeds.

20 Ex.3(II) A ball of mass kg moving east ( direction) with a speed of collides head- on with a kg ball at rest. If the collision is perfectly elastic, what will be the speed and direction of each ball after the collision?

21 Ex.3 Let A represent the kg ball, and B represent the kg ball. We have and. Use Eq. 7-7 to obtain a relationship between the velocities. Substitute this relationship into the momentum conservation equation for the collision

22 Ex.3

23 VI. Inelastic Collisions With inelastic collisions, some of the initial kinetic energy is lost to thermal or potential energy. It may also be gained during explosions, as there is the addition of chemical or nuclear energy. A completely inelastic collision is one where the objects stick together afterwards, so there is only one final velocity.

24 Ex.4 (I) In a ballistic pendulum experiment, projectile 1 results in a maximum height h of the pendulum equal to 2.6 cm. A second projectile causes the the pendulum to swing twice as high, h 2 = 5.2 cm. The second projectile was how many times faster than the first?

25 The initial projectile speed is given by. Compare the two speeds with the same masses.

26 Ex.4

27 Ex.5 (II) A 28-g rifle bullet traveling 230 m/s buries itself in a 3.6-kg pendulum hanging on a 2.8-m-long string, which makes the pendulum swing upward in an arc. Determine the vertical and horizontal components of the pendulum’s displacement.

28 Ex.5 From Example 4, we know that L x L - h  h

29 Ex.5 From the diagram, we see that L x L - h  h

30 VII. Collisions in Two or Three Dimensions Conservation of energy and momentum can also be used to analyze collisions in two or three dimensions, but unless the situation is very simple, the math quickly becomes unwieldy. Here, a moving object collides with an object initially at rest. Knowing the masses and initial velocities is not enough; we need to know the angles as well in order to find the final velocities.

31 Problem solving: 1. Choose the system. If it is complex, subsystems may be chosen where one or more conservation laws apply. 2. Is there an external force? If so, is the collision time short enough that you can ignore it? 3. Draw diagrams of the initial and final situations, with momentum vectors labeled. 4. Choose a coordinate system. 5. Apply momentum conservation; there will be one equation for each dimension. 6. If the collision is elastic, apply conservation of kinetic energy as well. 7. Solve. 8. Check units and magnitudes of result. VII. Collisions in Two or Three Dimensions

32 VIII. Center of Mass In (a), the diver’s motion is pure translation; in (b) it is translation plus rotation. There is one point that moves in the same path a particle would take if subjected to the same force as the diver. This point is called the center of mass (CM). The general motion of an object can be considered as the sum of the translational motion of the CM, plus rotational, vibrational, or other forms of motion about the CM.

33 For two particles, the center of mass lies closer to the one with the most mass: where M is the total mass. VIII. Center of Mass

34 The center of gravity is the point where the gravitational force can be considered to act. It is the same as the center of mass as long as the gravitational force does not vary among different parts of the object. VIII. Center of Mass

35 The center of gravity can be found experimentally by suspending an object from different points. The CM need not be within the actual object – a doughnut’s CM is in the center of the hole. VIII. Center of Mass

36 IX.CM for the Human Body High jumpers have developed a technique where their CM actually passes under the bar as they go over it. This allows them to clear higher bars.

37 X. Center of Mass and Translational Motion The total momentum of a system of particles is equal to the product of the total mass and the velocity of the center of mass. The sum of all the forces acting on a system is equal to the total mass of the system multiplied by the acceleration of the center of mass:

38 X. Center of Mass and Translational Motion This is particularly useful in the analysis of separations and explosions; the center of mass (which may not correspond to the position of any particle) continues to move according to the net force.

39 Summary of Chapter 9 Momentum of an object: Newton’s second law: Total momentum of an isolated system of objects is conserved. During a collision, the colliding objects can be considered to be an isolated system even if external forces exist, as long as they are not too large. Momentum will therefore be conserved during collisions. Impulse: In an elastic collision, total kinetic energy is also conserved. In an inelastic collision, some kinetic energy is lost. In a completely inelastic collision, the two objects stick together after the collision. The center of mass of a system is the point at which external forces can be considered to act.

40 HOMEWORK Giancoli, Chapter 9 4, 15, 17, 19, 25, 28, 34, 40, 41, 46 References o “Physics For Scientists &Engineers with Modern Physics” Giancoli 4 th edition, Pearson International Edition