Uli Heber Subluminous O stars Origin and evolutionary links Hydrogen-Deficient Stars, Tübingen 20.9.2007.

Slides:



Advertisements
Similar presentations
Hot Subdwarf Stars Uli Heber Dr. Remeis-Sternwarte & ECAP University of Erlangen-Nürnberg Bamberg The late stages of stellar evolution: Some Prblems and.
Advertisements

Stellar Evolution. Evolution on the Main Sequence Zero-Age Main Sequence (ZAMS) MS evolution Development of an isothermal core: dT/dr = (3/4ac) (  r/T.
Hypervelocity Stars Ejected from the Galactic Center STScI Colloquium Oct 3, 2007 Warren R. Brown Smithsonian Astrophysical Observatory Collaborators:
Stars and the HR Diagram Dr. Matt Penn National Solar Observatory
The Lives of Stars Chapter 12. Life on Main-Sequence Zero-Age Main Sequence (ZAMS) –main sequence location where stars are born Bottom/left edge of main.
Observational properties of pulsating subdwarf B stars. Mike Reed Missouri State University With help from many, including Andrzej Baran, Staszek Zola,
Reaching the 1% accuracy level on stellar mass and radius determinations from asteroseismology Valerie Van Grootel (University of Liege) S. Charpinet (IRAP.
ECLIPSING BINARIES IN OPEN CLUSTERS John Southworth Dr Pierre Maxted Dr Barry Smalley Astrophysics Group Keele University.
KIAA-Cambridge Workshop The Formation of Peculiar Stars Zhanwen Han (Kunming)
S. Hall, C. Winter, C.S. Jeffery October 2008 – December 2008 T C D ABSTRACT The aim of this project is to classify and parameterise a large sample of.
Mass Loss at the Tip of the AGB What do we know and what do we wish we knew!
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
VLT spectroscopy of SDSS cataclysmic variables John Southworth Boris Gänsicke Tom Marsh.
The Effects of Mass Loss on the Evolution of Chemical Abundances in Fm Stars Mathieu Vick 1,2 Georges Michaud 1 (1)Département de physique, Université.
Nov. 6, 2008Thanks to Henrietta Leavitt Cepheid Multiplicity and Masses: Fundamental Parameters Nancy Remage Evans.
White Dwarfs. References D. Koester, A&A Review (2002) “White Dwarfs: Recent Developments” Hansen & Liebert, Ann Rev A&A (2003) “Cool White Dwarfs” Wesemael.
Institute for Astronomy and Astrophysics, University of Tübingen, Germany July 5, 2004Cool Stars, Stellar Systems and the Sun (Hamburg, Germany)1 Turning.
Stellar Winds and Mass Loss Brian Baptista. Summary Observations of mass loss Mass loss parameters for different types of stars Winds colliding with the.
Helium-Rich Subdwarf B Stars Amir Ahmad Armagh Observatory C.S. Jeffery and collaborators 20 September 2007 Tübingen.
Anyone Out There? Post-AGB Stars in the Galactic Halo S. Weston, R.Napiwotzki & S. Catalán University of Hertfordshire, UK.
Hunting down the subdwarf populations Peter Nemeth KU Leuven, Belgium Bamberg, Germany; Sep 13, 2013.
Model atmospheres for Red Giant Stars Bertrand Plez GRAAL, Université de Montpellier 2 RED GIANTS AS PROBES OF THE STRUCTURE AND EVOLUTION OF THE MILKY.
The formation of sdB stars vvv Influence of substellar bodies on late stages of stellar evolution Valerie Van Grootel (1) S. Charpinet (2), G. Fontaine.
Uli Heber Bad Honnef, Hyper-velocity stars in the Milky Way.
Stellar Evolution. Consider a cloud of cold (50 deg K) atomic hydrogen gas. If an electron of one atom flips its spin state and the electron then has.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
The asteroseismic analysis of the pulsating sdB Feige 48 revisited V. Van Grootel, S. Charpinet, G. Fontaine P. Brassard, E.M. Green and P. Chayer.
The White Dwarf in SS Cygni: FUSE + HST Spectral Analysis Edward M. Sion, Patrick Godon, Janine Myszka Edward M. Sion, Patrick Godon, Janine Myszka Department.
A Spectroscopic Survey of Bright DA(…) White Dwarfs Alexandros Gianninas, Pierre Bergeron Université de Montréal Jean Dupuis Canadian Space Agency Maria.
Lecture 17 Post-ms evolution II. Review Review Review.
Stellar Evolution Beyond the Main Sequence. On the Main Sequence Hydrostatic Equilibrium Hydrogen to Helium in Core All sizes of stars do this After this,
SPETTROSCOPIA DI STELLE CALDE DI RAMO ORIZZONTALE IN AMMASSI GLOBULARI COFIN 2001 – Bologna, 12 giugno 2003.
asteroseismology of pulsating sdB stars
Element abundances of bare planetary nebula central stars and the shell burning in AGB stars Klaus Werner Institut für Astronomie und Astrophysik Universität.
The Origins of Hot Subdwarf Stars as Illuminated by Composite- Spectrum Binaries Michele A. Stark (Penn State University) Advisor: Richard A. Wade Thursday.
From an evolutionary point of view Selma de Mink Utrecht University Lorentz Center Workshop “Stellar Mergers” Ines Brott (Utrecht), Matteo Cantiello (Utrecht),
Different Kinds of “Novae” I. Super Novae Type Ia: No hydrogen, CO WD deflagration --> detonation Type Ia: No hydrogen, CO WD deflagration --> detonation.
Uli Heber Oxford, Hyper-velocity stars.
Institute for Astronomy and Astrophysics, University of Tübingen 16 Aug th European White Dwarf Workshop Tübingen, Germany 1 HST / COS Spectroscopy.
The Empirical Mass Distribution of Hot B Subdwarfs derived by asteroseismology and other means Valerie Van Grootel (1) G. Fontaine (2), P. Brassard (2),
9. Evolution of Massive Stars: Supernovae. Evolution up to supernovae: the nuclear burning sequence; the iron catastrophe. Supernovae: photodisintigration;
Lecture 18 Stellar populations. Stellar clusters Open clusters: contain stars loose structure Globular clusters: million stars centrally.
Globular Clusters. A globular cluster is an almost spherical conglomeration of 100,000 to 1,000,000 stars of different masses that have practically.
Metallicity and age of selected nearby G-K Giants L. Pasquini (ESO) M. Doellinger (ESO-LMU) J. Setiawan (MPIA) A. Hatzes (TLS), A. Weiss (MPA), O. von.
Tübingen, Hydrogen-Deficient Stars1 O(He) Stars Thomas Rauch Elke Reiff Klaus Werner Jeffrey W. Kruk Institute for Astronomy and Astrophysics.
Hunting down the subdwarf populations Peter Nemeth Roy Østensen and Joris Vos KU Leuven, Belgium; In collaboration with Stephane Vennes and Adela Kawka.
Julie Hollek and Chris Lindner.  Background on HK II  Stellar Analysis in Reality  Methodology  Results  Future Work Overview.
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
FUSE spectroscopy of cool PG1159 Stars Elke Reiff (IAAT) Klaus Werner, Thomas Rauch (IAAT) Jeff Kruk (JHU Baltimore) Lars Koesterke (University of Texas)
Subdwarf B stars from He white dwarf mergers Haili Hu.
SEGUE Target Selection on-going SEGUE observations.
Internal dynamics from asteroseismology for two sdB pulsators residing in close binary systems Valérie Van Grootel (Laboratoire d’Astrophysique de Toulouse.
Binary Origin of Blue Stragglers Xuefei CHEN Yunnan Observatory, CHINA.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
8/18/2010 Claus Leitherer: Young Stellar Populations 1 Young Stellar Populations in the Ultraviolet Claus Leitherer (STScI)
Globular Clusters Globular clusters are clusters of stars which contain stars of various stages in their evolution. An H-R diagram for a globular cluster.
Nordforsk 2012, Moletai, 2012/08/03 - Roy H. Østensen Observational Asteroseismology of Hot Subdwarf Stars ___ Roy H. Østensen KU Leuven, Belgium.
Spectroscopy and the evolution of hot subdwarf stars
Single versus Binary Star Progenitors of Type IIb Supernovae
On the origin of Microturbulence in hot stars
HST/COS Observations of O(He) Stars
Hot subdwarfs from the SDSS/BOSS
Ageing low-mass stars: from red giants to white dwarfs
Stellar evolution and star clusters
ASTEROSEISMOLOGY OF LATE STAGES OF STELLAR EVOLUTION
Single Vs binary star progenitors of Type Iib Sne
Stellar Evolution.
Pair Instability Supernovae
The Link Between Underluminous Supernovae Explosions, Gravitational Waves and Extremely Low Mass White Dwarfs Alex Gianninas Mukremin Kilic, Warren Brown,
Presentation transcript:

Uli Heber Subluminous O stars Origin and evolutionary links Hydrogen-Deficient Stars, Tübingen

Outline  Early results  Atmospheric parameters  Evolutionary scenarios - Close binary evolution (RLOF, CEE & WD mergers) vs - Delayed core helium flashers - (non-core helium-burning stars)  Kinematics  Summary & Outlook

sdO vs. sdB stars sdO sdB sdB stars: - helium-deficient - „cool“: 20-40kK sdO stars: - H-deficient - Hot > 40kK - He-sdOs: No hydrogen

Subluminous O and B stars Greenstein & Sargent (1974)

sdB stars: He-deficiency from diffusion Metal abundances HST/STIS UV spectra -Enrichment of heavy elements (>100 times) except Fe -Radiative levitation Fe Pb O´Toole & Heber 2006 CPD PB/ 208 PB =solar

Post-EHB vs post-AGB evolution sdB = Extended Horizontal Branch stars: - He-burning core & inert H-envelope (<0.01 Msun) - How to loose the envelope? - sdO stars=post-EHB? Post-AGB Objects: -rare -linked to RCrB/EHe stars

sdB sdO Convective transformation (Wesemael et al. 1982) Groth et al. (1985): Convection occurs in He-rich atmo- spheres only Convection He/H=1 sdO sdB

Hot subdwarfs from UVX Surveys LTE- spectroscopic analyses of sdB stars: - Palomar Green survey: Saffer et al. 1994, Maxted et al Hamburg Quasar Survey: Edelmann et al ESO-Supernova Progenitor Survey (SPY): Lisker et al NLTE spectroscopic analyses of sdO-stars: - SPY (Ströer et al. 2007) - Sloan Digital Sky Survey (Hirsch et al. 2007) atmospheric parameters for >200 sdB atmospheric parameters for 130 sdO

Fits of UVES-spectra (SPY): sdO high resolution spectra, TMAP NLTE models, H&He sdOHe sdO

Fits of SDSS-spectra: sdO sdOHe sdO

SPY: C & N lines solar - C&N strong: diamonds - C strong: triangle - N strong - no C or N: open - All He-rich sdOs have C and/or N -None of the He-poor have C/N

Carbon III/IV SPY: n(C)=0.13% (Hirsch et al. 2007) v rot sin i=0 km/s

Carbon III/IV SPY: n(C)=0.25% (Hirsch et al. 2007) v rot sin i=20 km/s

solar SPY He-poor He-rich

The canonical picture He-ZAMS Smooth evolutionary time scales: - He-poor scattered in diagram progeny of sdB stars - Clumping of He-rich sdOs can not be explained

SPY&SDSS: sdB, sdO & He-sdO sdO stars: He-sdO: clumping at -Teff = 45000K -log g = 5.8 sdB He-sdO clump SPY-sds: without error bars

Post EHB EHB He-ZAMS Sub- He-ZAMS SPY&SDSS: sdB, sdO & He-sdO

Hot He flashers Delayed He core flash Canonical evolution Sweigart, 1987 Core flash

Delayed helium shell flash He sdO

Very late helium core flash He sdO He/C Could explain He-sdOs below the Helium ZAMS

sds in binaries  mostly single-lined: RV curve:  mass function SPY: fraction of close binaries: radial velocity variables with P<10d sdBs; :40% (Napiwotzki et al.,2005) Minimum mass of companion Napiwotzki et al sdOs: 4% RVV (from SPY)

Period distribution Nature of companions: white dwarf or low mass m.s. stars WDWD MS unknown Morales-Rueda (2006)

Binary Population Synthesis (BPS) Han et al. (2003) a: 1. CE ejection b: 1. stable RLOF c: 2. CE ejection d: merger of two helium white dwarfs

Comparison to Han et al. (HPMM) sdBs: best match: models with correlated masses and low CEE efficiency Poor match: models with 100% CEE efficiency O-types: He-rich sdOs: stars clump at 45000K, too hot for any HPMM simulation set He-poor sdO: scattered in (Teff, log g) diagram Ströer et al. 2007

Non core helium-burning evolution Castellani, Castellani & Moroni (2006) M=0.8 Msun η=0.75 Star leaves RGB Before helium ignites in the core (e.g. by mass tranfer to a companion) Cooling tracks to form helium white dwarfs

Non-core helium-burning sdB stars HD (V=10.2) (Heber et al., 2001) - Hipparcos parallax - distance = 80 pc - mass = 0.22 M sun No helium burning - companion: M>0.72M sun Tracks: Driebe et al.

A Hyper-velocity star (HVS) amongst sdO stars from SDSS HVS km/s Galactic restframe velocity

SMBH Slingshot Hills (1988):  Disruption of a binary near a Super- Massive Black Hole releases companion at up to 1000 km/s or more.  Detection of a single HVS: evidence for a SMBH Gualandris et al. (2005)

Summary & Conclusion  Origin of sdB/sdO stars? (i) delayed core helium flash (ii) close binary evolution (RLOF & CEE ejection), mergers of He-WDs He-poor sdOs are the progeny of sdB stars He-rich sdO stars are hotter than predicted by (i) & (ii) atmospheres: No metal line blanketing metalicity effects evolution (Brown et al. 2007) Post-AGB-evolution & Non-core He-burning evolution: rare due to short evolutionary time scales

Outlook: A pulsating sdO star Strongest mode: P=119.3 s A=38.6 mmag plus - First Harmonic plus - 8 modes: s Woudt et al. (2001)

Stellar & Envelope Masses Masses: 0.45 to 0.55 M sun Envelope masses: M sun sdB

Thank You!

sdB Asteroseismology Multi-periodic light variations (few mmag) at periods from 2 to 10min. Østensen et al. (2001)

Carbon and Nitrogen SPY: C and/or N lines Detected - in all helium-rich - In none of the helium-poor ones (Ströer et al. 2007)

Carbon abundances

Challenges  Observations: better statistics, better data: the quest for high resolution. metal abundances (see Poster 25)  Evolution theory: Prediction of surface abundances for late hot flasher (Cassisi et al. 2003) & He WD mergers  Angular momentum and stellar rotation  Stellar atmospheres & envelopes: diffusion (rad. levitation) & metal line blanketing, see talk by G. Michaud  Mass loss and diffusion  The role of magnetic fields (O´Toole et al. 2005)

Grazie!

Blue Hook stars

HD128220B: Fe & Ni Fe/H=1/100 solar Ni/H=1/10 solar

US 708: Keck LRIS spectrum T eff = 45500K, log g = 5.23, mass = 0.5 M o B=19.0 mag Distance: 19 kpc

Run-away stars  Ejection scenario: born in the plane and ejected (Blaauw, 1961) - binary supernova ejection - 3 body interaction in an open cluster  Calculate path and time of flight: - radial velocities, distances & proper motion - orbit integrator: Odenkirchen & Brosche (1992) - Galactic potential: Allen & Santillan (1991)

BD (Lanz et al. 1997) - Slight enrichment of Fe&Ni -fully metal line blanketed models: Teff lower by 6000K than metal free models

Metallicity effects on atmospheric parameters for the sdB SB 707 Solar ([m/H]=0.0): Teff = 33940K log g= 5.82 log He/H= *solar ([m/H]=+1.0) : Teff = 35380K log g= 5.90 log He/H=-2.91 Metal line blanketed LTE models

Summary II Heavy metals in sdO and sdB stars:  Non solar abundances of Fe & Ni in sdO stars  Non solar Ni/Fe (>solar)  Strong enrichment of many iron group elements in hot sdB stars (except Fe), about solar in “cool” sdBs (<30000K): FUV flux suppression UV upturn  Teff scale significantly changed by supersolar metal abundances (line blanketing)

Outlook: Radial velocities Vrad=700Km/s Hypervelocity star

Cosmic accelerator? Ejection from a cluster by three body interaction? SN II in a binary release companion at orbital velocity? Supermassive black hole in the Galactic center? Better ideas??

HQS-sdB: comparison with Han et al.

Trends of helium abundance sdB sdO He sdO solar  sdB stars: - 2 sequences  sdO stars: - Spread by 6 orders of magnitude - 1/3 helium- deficient!

sdB Helium abundances Edelmann et al Two sequences: He/H vs. T eff

Hamburger Quasar Survey sdB stars: Edelmann et al. 2003: 100 sdB stars

sdB = Extreme HB stars Saffer et al EHB Post-EHB

The lower sequence Tracks from Driebe et al. (1998) M core

sdB and sdO stars from SPY SPY: ESO-VLT+UVES: High-res. Spectra of >1000 Double degenerate candidates - sdB: 79 (Lisker et al. 2005) - He-sdO: 30 (Ströer et al. sdO: ) - fraction of RV variables (P<10d): sdB: 39% He-sdO: 4% (1 SB2 binary) sdB

Trends and Sequences

Combining all studies Neglecting selection bias SDSS sdBs: To be done sdB Gap ? SPY-sds: no error bars shown

BPS Han et al: Binary population synthesis a)Without GK selection b)With GK selection

M 15 UV

Post EHB & post-AGB evolution Post-AGB Post EHB

UV spectroscopy of HB stars Caloi, Castellani et al Heber et al IUE

SDSS-sdOs Atmospheric models: - NLTE: - H+He, no metals - PRO2 code (Dreizler &Werner) - improved He atomic models - temperature correction scheme (Dreizler, 2003) sdO He sdO

Globular Cluster CMDs Moehler (2000) NGC 2808 (Walker, 1999) Blue hoo k

NGC 6752: HB &EHB stars Moni-Bidin et al. (2007) LTE spectral analyses: T eff, logg g match (E)HB prediction Helium subsolar

EHB Models Castellani et al Helium core mass: 0.47 M sun depen- ding on He and metal abundance (fixed by onset of He core flash) Horizontal Branch= sequence of envelope mass M env, EHB=very low M env (0.01 M sun ), inert H-rich envelope avoids AGB evolutions

Origin of EHB stars Castellani & Castellani 1993 M=0.8 Msun η=0.75 EHB-progenitor stars must loose almost their entire envelope by the time of the helium core flash strong RGB mass loss; Low mass stars (Pop. II, globular cluster): Very efficient RGB Reimers wind may be sufficient. Younger populations, i.e. more massive progenitors (field): ?

KPD : sdB + massive WD Billeres et al, 2000 Maxted et al. 2000, Geier et al. 2007

Candidate SN Ia Progenitor KPD : Total mass=1.4 Msun (Chandrasekhar mass) -Double degenerate -System merges within years -SN Ia explosion? (Geier et al. 2007) More on massive compaions: talk by Stephan Geier

sdB Asteroseismology Non-radial p-mode Pulsationa driven by Iron opacity bump: Predicted instability Strip matches Observations Charpinet et al. (2001)

sdB Asteroseismology Period matching technique: Linear theory: Amplitudes can not be predicted (PG1325+, Charpinet et al. 2006)

Metal abundances: Fe & Ni Feige 34: He-poor sdO Teff=60kK Fe/H=10*solarN i/H=70*solar

sdB Asteroseismology (PG1325, Charpinet et al. 2006) Model parameters: T eff, log g, M total, M env

sdB Asteroseismology PG : Time resolved spectroscopy (9000 spectra) Radial velocity variations (O´Toole et al. 2005): 20 periods (few km/s) Line profile variations (phase folded, Tillich et al. 2007):

sdB Asteroseismology Dominant mode: Teff semi-amplitude: 800K Log gsemi-amplitude: 0.08 First harmonic detected Cleaning for dominant mode: 8 weaker modes detected

sdO stars from SDSS candidates selected from all releases according to colour: u-g<0.2 (0.4) g-r<0.1  spectra:  40 sdO + 43 He sdO (Hirsch, Dipl. Thesis) Fits with NLTE models He sdO

The two sequences

Tracks from Dorman et al. (2003) with Z=0.02

The upper sequence Tracks from Dorman et al. (2003)

The lower sequence Tracks from Dorman et al. (2003)

Early NLTE Analyses : sdO Classification: He II > He I He-sdO: no Balmer detectable to the eye C and/or N strong sdO: otherwise Hunger et al Heber (1987) Post-EHB Post-AGB

Evolution of hot subluminous stars: the canonical picture SdB + sdO stars: Extreme Horizontal Branch stars EHB HB sdB sdO Dorman et al. (1993, ApJ 419, 596)

He-rich sdOs: - diamonds: C&N strong - C strong triangles -N strong - (triangles)

The lower sequence Tracks from Driebe et al. (1998) M core