Coronal Heating of an Active Region Observed by XRT on May 5, 2010 A Look at Quasi-static vs Alfven Wave Heating of Coronal Loops Amanda Persichetti Aad.

Slides:



Advertisements
Similar presentations
Solar Theory (MT 4510) Clare E Parnell School of Mathematics and Statistics.
Advertisements

Study of Magnetic Helicity Injection in the Active Region NOAA Associated with the X-class Flare of 2011 February 15 Sung-Hong Park 1, K. Cho 1,
Jan 13, 2009ISSI1 Modeling Coronal Flux Ropes A. A. van Ballegooijen Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, U.S.A Collaborators:
The Sun’s Dynamic Atmosphere Lecture 15. Guiding Questions 1.What is the temperature and density structure of the Sun’s atmosphere? Does the atmosphere.
Non-Equilibrium Ionization Modeling of the Current Sheet in a Simulated Solar Eruption Chengcai Shen Co-authors: K. K. Reeves, J. C. Raymond, N. A. Murphy,
Nanoflares and MHD turbulence in Coronal Loop: a Hybrid Shell Model Giuseppina Nigro, F.Malara, V.Carbone, P.Veltri Dipartimento di Fisica Università della.
MSU Solar Physics REU Jennifer O’Hara Heating of Flare Loops With Observationally Constrained Heating Functions Advisors Jiong Qiu, Wenjuan Liu.
Modeling the Magnetic Field Evolution of the December Eruptive Flare Yuhong Fan High Altitude Observatory, National Center for Atmospheric Research.
Ryan Payne Advisor: Dana Longcope. Solar Flares General  Solar flares are violent releases of matter and energy within active regions on the Sun.  Flares.
Simulation of Flux Emergence from the Convection Zone Fang Fang 1, Ward Manchester IV 1, William Abbett 2 and Bart van der Holst 1 1 Department of Atmospheric,
Chip Manchester 1, Fang Fang 1, Bart van der Holst 1, Bill Abbett 2 (1)University of Michigan (2)University of California Berkeley Study of Flux Emergence:
Extrapolation vs. MHD modeling Hardi Peter Kiepenheuer-Institut Freiburg, Germany Contribution to the discussions at the SDO workshop / Monterey Feb 2006.
Vincent Surges Advisors: Yingna Su Aad van Ballegooijen Observations and Magnetic Field Modeling of a flare/CME event on 2010 April 8.
Do magnetic waves heat the solar atmosphere? Dr. E.J. Zita The Evergreen State College Fri.30.May 2003 at Reed College NW Section.
The Sun Astronomy 311 Professor Lee Carkner Lecture 23.
Modelling X-ray Bright Points on the Quiet Sun. Parameter fitting to a Coronal Heating solution. Matthew Chantry Mentor: Aad van Ballegooijen University.
Reconstructing Active Region Thermodynamics Loraine Lundquist Joint MURI Meeting Dec. 5, 2002.
The Sun- Our Star. The Sun- Our Star Star Parts: core radiation zone convection zone photosphere chromosphere corona solar wind.
Feb. 2006HMI/AIA Science Team Mtg.1 Heating the Corona and Driving the Solar Wind A. A. van Ballegooijen Smithsonian Astrophysical Observatory Cambridge,
Physics 681: Solar Physics and Instrumentation – Lecture 21 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
1 The Connection between Alfvénic Turbulence and the FIP Effect Martin Laming, Naval Research Laboratory, Washington DC
Why does the temperature of the Sun’s atmosphere increase with height? Evidence strongly suggests that magnetic waves carry energy into the chromosphere.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State (Regnier, S., Priest, E.R ApJ) Use magnetic field extrapolations.
Magnetic Waves in Solar Coronal Loops Ryan Orvedahl Stony Brook University Advisor: Aad van Ballegooijen Center for Astrophysics.
Incorporating Kinetic Effects into Global Models of the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics.
Conversations with the Earth Tom Burbine
Magnetic configurations responsible for the coronal heating and the solar wind Hwanhee Lee 1, Tetsuya Magara 1 1 School of Space research, Kyung Hee University.
Physical analogies between solar chromosphere and earth’s ionosphere Hiroaki Isobe (Kyoto University) Acknowledgements: Y. Miyoshi, Y. Ogawa and participants.
MAGNETIC TWIST OF EUV CORONAL LOOPS OBSERVED BY TRACE RyunYoung Kwon, Jongchul Chae Astronomy Program, School of Earth and Environmental Science Seoul.
Youtube: Secrets of a Dynamic Sun The Sun – Our Star
The Sun. Sun Considered a medium STAR 93,000,000 miles away from Earth 1.39 million kilometers in diameter (one million Earths can fit inside the sun.
ABSTRACT This work concerns with the analysis and modelling of possible magnetohydrodynamic response of plasma of the solar low atmosphere (upper chromosphere,
By: Kiana and Meagan. Purpose  To measure solar magnetic fields  To understand how energy generated by magnetic-field changes in the lower solar atmosphere.
Probing Energy Release of Solar Flares M. Prijatelj Carnegie Mellon University Advisors: B. Chen, P. Jibben (SAO)
Will it Fit? A Comparison of Asymmetric Magnetic Reconnection Models and Observations Drake Ranquist Brigham Young University Advisors: Mari Paz Miralles.
The Sun ROBOTS Summer Solar Structure Core - the center of the Sun where nuclear fusion releases a large amount of heat energy and converts hydrogen.
By: Mrs. Greg Jennings.  Plasma is the fourth state of matter Liquid, solid, gas are the other three states Plasma is super-heated ionized gas.
Newark, Wiegelmann et al.: Coronal magnetic fields1 Solar coronal magnetic fields: Source of Space weather Thomas Wiegelmann, Julia Thalmann,
Solar Atmosphere A review based on paper: E. Avrett, et al. “Modeling the Chromosphere of a Sunspot and the Quiet Sun” and some others [Alexey V. Byalko]
CSI /PHYS Solar Atmosphere Fall 2004 Lecture 09 Oct. 27, 2004 Ideal MHD, MHD Waves and Coronal Heating.
1 Searching for Alfvén Waves John Yoritomo The Catholic University of America Mentor: Dr. Adriaan van Ballegooijen The Smithsonian Astrophysical Observatory.
Coronal Dynamics - Can we detect MHD shocks and waves by Solar B ? K. Shibata Kwasan Observatory Kyoto University 2003 Feb. 3-5 Solar B ISAS.
M. L. Khodachenko Space Research Institute, Austrian Academy of Sciences, Graz, Austria Damping of MHD waves in the solar partially ionized plasmas.
Evolution of Emerging Flux and Associated Active Phenomena Takehiro Miyagoshi (GUAS, Japan) Takaaki Yokoyama (NRO, Japan)
Partially Ionized Plasma Effect in Dynamic Solar Atmosphere Naoki Nakamura 2015/07/05 Solar Seminar.
PHYS 1621 Proton-proton cycle 3 steps. PHYS 1622 Layers of the Sun Mostly Hydrogen with about 25% Helium. Small amounts of heavier elements Gas described.
The Sun Youra Taroyan. Age 4.5 ×10 9 years Mean diameter 1.392×10 6 km, 109 × Earth Mass ×10 30 kg, 333,000 × Earth Volume 1.412×10 18 km 3, 1,300,000.
Karen Meyer University of St Andrews Scotland 1 st year PhD student (3 months in)
The Sun: Part 2. Temperature at surface = 5800 K => yellow (Wien’s Law) Temperature at center = 15,000,000 K Average density = 1.4 g/cm 3 Density at center.
The Sun, our favorite star!
Effect of solar chromospheric neutrals on equilibrium field structures - T. Arber, G. Botha & C. Brady (ApJ 2009) 太陽雑誌会ー 22/01/10.
Observations and nonlinear force-free field modeling of active region Y. Su, A. van Ballegooijen, B. W. Lites, E. E. DeLuca, L. Golub, P. C. Grigis,
SHINE Formation and Eruption of Filament Flux Ropes A. A. van Ballegooijen 1 & D. H. Mackay 2 1 Smithsonian Astrophysical Observatory, Cambridge,
Shock heating by Fast/Slow MHD waves along plasma loops
Reading Unit 31, 32, 51. The Sun The Sun is a huge ball of gas at the center of the solar system –1 million Earths would fit inside it! –Releases the.
Observations and Magnetic Field Modeling of the Flare/CME Event on 2010 April 8 Yingna Su Bernhard Kliem, Adriaan van Ballegooijen, Vincent Surges, Edward.
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © The Sun: Magnetic Structure Feb. 16, 2012.
Data-constrained Simulation of CME Initiation and Propagation Antonia Savcheva ESPM 2014 September 11, 2014 Collaborators: R. Evans, B. van der Holst,
The Sun. Properties M = 2 X kg = 300,000 M Earth R = 700,000 km > 100 R Earth 70% H, 28% He T = 5800 K surface, 15,000,000 K core.
Solar Magnetism: Solar Cycle Solar Dynamo Coronal Magnetic Field CSI 662 / ASTR 769 Lect. 03, February 6 Spring 2007 References: NASA/MSFC Solar Physics.
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
SDO-meeting Napa, Wiegelmann et al: Nonlinear force-free fields 1 A brief summary about nonlinear force-free coronal magnetic field modelling.
Diagnosing kappa distribution in the solar corona with the polarized microwave gyroresonance radiation Alexey A. Kuznetsov1, Gregory D. Fleishman2 1Institute.
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
SUN COURSE - SLIDE SHOW 7 Today: waves.
Magnetic Field.
Introduction to Space Weather
Coronal Loop Oscillations observed by TRACE
The sun gives off tremendous amounts of energy
Presentation transcript:

Coronal Heating of an Active Region Observed by XRT on May 5, 2010 A Look at Quasi-static vs Alfven Wave Heating of Coronal Loops Amanda Persichetti Aad Van Ballegooijen

... Meet the Corona Solar Corona Plasma : “The 4th State of Matter” ~ An ionized gas consisting of electrons that have been pulled free of atoms and ions, in which the temperature is too high for neutral, un-ionized atoms to exist Low Densities High Temperatures Dominated by Magnetic Fields Electrically neutral plasma As a result of plasma motion, magnetic fields are generated in the sun X-ray Radiation B-Field Frozen-in to Plasma

~Quasi-static ~Alfven Wave Turbulence ~Micro/Nano Flares Coronal Heating it defies expectations --> hundreds of times hotter than photosphere Thermodynamics Why do we Study it? A few studied Mechanisms Identify Energy Source Conversion Mechanism Heating Plasma Response Radiation Observables Klimchuk, SoPh, 2006

Magnetohydrodynamics (MHD) Equation of Motion Force Free Condition Ampere’s Law A function of position that describes the twist of the field and must be constant along field lines. Cases = 0 Potential Field = constant Linear FFF (r) Non-Linear FFF

Instruments XRT (Hinode) Solar Dynamics Observatory (SDO) AIA HMI

Active Region: a region in the solar atmosphere, from the photosphere to the corona, that develops when strong magnetic fields emerge from inside the sun. Magnetized realm in and around sunspots. Magnetogram from HMI XRT Image

May 5, 2010 Active Region 171Å AIA ImageOne hour movie of 171Å images

Modeling Magnetic Fields ~A software package that allows you to construct models of the solar corona based on photospheric magnetograms from HMI and coronal images from AIA ~Models provide information about the coronal magnetic field that cannot already be directly observed from SDO data. Accurately model the magnetic field lines of the active region based on data from SDO. This gives us a better idea of the properties of the region in order to make more educated conclusions, in our case, about the heating. Accurately model the magnetic field lines of the active region based on data from SDO. This gives us a better idea of the properties of the region in order to make more educated conclusions, in our case, about the heating. Non-Potential Field 1) Construct potential field 2)Insert flux rope in model along manually selected path 3)Apply magneto-frictional relaxation CMS PurposeMS Program Approach van Ballegooijen et al. (2010 in prep)

green contou rs = neg Bfield adjust model so field lines match loops Can see distinct loops in 171 A image red contour s = pos Bfield

Heating of Coronal Loops Quasi-Static Response to foot-point motions Alfven Waves

Chromosphere Waves reflected back down due to increase in speed with height creates turbulence Alfven Wave Turbulence New View About Waves

Heating Rates Quasi-Static Heating Rate per unit volume Alfven Wave Heating Rate Quasi-Static heating dependent on magnetic field, loop length, and properties of foot-point motions. Alfven Wave heating is based on numerical simulations.

Heating of Coronal Loops Radiative Loses Heating Rate Thermal Conduction Compute Temperature and Density with respect to position Three processes related to heating present in the corona: ~Heating rate contribution ~Thermal Conduction ~Radiative Loses

Solve Coronal Heating Problem for Many Field Lines

Alfven velocity = 1.1 km/s Foot-point motion time = 40s Computed and Observed XRT Count Rates Alfven Wave Turbulence Quasi-Static Footpoint Motion

Conclusions Alfven wave turbulence gives off a lot more heating energy than the quasi-static mechanism producing heat rates on orders of 10 2 greater. This made it able for us to get a more accurate fit of calculated intensities to actual intensities for reasonable values of the the foot-point motion parameters. The solar corona is so active and constantly changing. When it comes to modeling active regions, each individual one must be modeled with its own individual parameters. They are not consistent for all active regions on surface.

Continued Study Apply this analysis to various active regions New model involving Alfven wave turbulence Consider interactions between neighboring flux tubes including splitting/merging of flux tubes

Special Thanks to Aad van Ballegooijen Karen Meyer