Динамика магнитных полей в областях корональных дыр Беневоленская Е.Е., Понявин Ю. Д. ГАО РАН.

Slides:



Advertisements
Similar presentations
Chapter 8 The Sun – Our Star.
Advertisements

High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
The Sun’s Dynamic Atmosphere Lecture 15. Guiding Questions 1.What is the temperature and density structure of the Sun’s atmosphere? Does the atmosphere.
Abundances in the Solar Atmosphere and in the Solar Wind Tuesday PM and Wednesday AM Enrico Landi (University of Michigan) Daniel Wolf Savin (Columbia.
Reviewing the Summer School Solar Labs Nicholas Gross.
Non-Equilibrium Ionization Modeling of the Current Sheet in a Simulated Solar Eruption Chengcai Shen Co-authors: K. K. Reeves, J. C. Raymond, N. A. Murphy,
General Properties Absolute visual magnitude M V = 4.83 Central temperature = 15 million 0 K X = 0.73, Y = 0.25, Z = 0.02 Initial abundances: Age: ~ 4.52.
Instructor Notes These images correspond to the layers of the Sun discussed in the Features of the Sun – 3D Sun lesson. Layers – Photosphere:
Magnetic fields in the photosphere and heliosphere: structure, statistical parameters, turbulent state Valentyna I. Abramenko Big Bear Solar Observatory.
Connections Between the Magnetic Carpet and the Unbalanced Corona: New Monte Carlo Models Steven R. Cranmer & Adriaan van Ballegooijen Harvard-Smithsonian.
AGU – Fall 2006 The Solar Polar Field – Cycles 21 – 23 The Solar Polar Field During Solar Cycles J. Todd Hoeksema, Yang Liu, XuePu Zhao & Elena Benevolenskaya.
High-latitude activity and its relationship to the mid-latitude solar activity. Elena E. Benevolenskaya & J. Todd Hoeksema Stanford University Abstract.
Physics 202: Introduction to Astronomy – Lecture 13 Carsten Denker Physics Department Center for Solar–Terrestrial Research.
HMI – Synoptic Data Sets HMI Team Meeting Jan. 26, 2005 Stanford, CA.
1 SDO/HMI Products From Vector Magnetograms Yang Liu – Stanford University
Identifying and Modeling Coronal Holes Observed by SDO/AIA, STEREO /A and B Using HMI Synchronic Frames X. P. Zhao, J. T. Hoeksema, Y. Liu, P. H. Scherrer.
From Geo- to Heliophysical Year: Results of CORONAS-F Space Mission International Conference «50 Years of International Geophysical Year and Electronic.
שיעור 8 מזג החלל Space Weather Core 25% radius Energy release.
Relationship between the High and mid latitude Solar Magnetic Field Elena E. Benevolenskaya J. Todd Hoeksema Stanford University.
1.B – Solar Dynamo 1.C – Global Circulation 1.D – Irradiance Sources 1.H – Far-side Imaging 1.F – Solar Subsurface Weather 1.E – Coronal Magnetic Field.
SPD – June 2006 Solar Polar Flux – MDI The Sun’s Polar Magnetic Flux Observed with SOHO/MDI J. Todd Hoeksema E.E. Benevolenskaya,
Physics 681: Solar Physics and Instrumentation – Lecture 25 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
Thomas Zurbuchen University of Michigan The Structure and Sources of the Solar Wind during the Solar Cycle.
Synoptic Solar Cycle observed by Solar Dynamics Observatory Elena Benevolenskaya Pulkovo Astronomical Observatory Saint Petersburg State University ‘Differential.
Solar Rotation Lab 3. Differential Rotation The sun lacks a fixed rotation rate Since it is composed of a gaseous plasma, the rate of rotation is fastest.
Coronal Heating of an Active Region Observed by XRT on May 5, 2010 A Look at Quasi-static vs Alfven Wave Heating of Coronal Loops Amanda Persichetti Aad.
Observing the Sun. Corona: EUV; X-rays Chromosphere: H , UV, EUV Photosphere: near UV, Visible light, infra-red.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
Modeling the Solar EUV irradiance
First Results on Solar Irradiance Variability from PROBA2/LYRA/SWAP R. Kariyappa (guest investigator), S. T. Kumar, M. Dominique, D. Berghmans, L. Dame,
The Atmospheric Imaging Assembly Measuring the Sun’s Surface, Chomosphere, Transition Region, and Corona using visible and extreme Ultra- violet light.
The Sun and the Heliosphere: some basic concepts…
By: Kiana and Meagan. Purpose  To measure solar magnetic fields  To understand how energy generated by magnetic-field changes in the lower solar atmosphere.
EUS - Science, JCV,RAL, March Solar Orbiter EUI/SOLAR ORBITER Report of the Science WG T. Appourchaux, F. Auchère, L. Harra, E. Marsch, L. Teriaca,
Solar Atmosphere A review based on paper: E. Avrett, et al. “Modeling the Chromosphere of a Sunspot and the Quiet Sun” and some others [Alexey V. Byalko]
SLIDE SHOW 3 B changes due to transport + diffusion III -- * * magnetic Reynold number INDUCTION EQUATION B moves with plasma / diffuses through it.
CDS meeting September 2005 Solar Physics at UCLan Dr Barbara Bromage Centre for Astrophysics University of Central Lancashire.
The Sun The Sun imaged in white light by the SOHO spacecraft.
POST CME EVENTS: COOL JETS AND CURRENT SHEET EVOLUTION A. Bemporad, G. Poletto, S. T. Suess IAU Symposium 226 Coronal and Stellar Mass Ejections September.
Invited speakers (afternoon): David Alexander (Rice University) Chip Manchester (University of Michigan) Brad Hindman (JILA/University of Colorado)
EVE Sun-as-a-Star Spectra Milligan et al “Fe Cascade” for SOL
2004 Oct. Quiet Sun and Active Region Studies by Nobeyama Radioheliograph Kiyoto SHIBASAKI Nobeyama Solar Radio Observatory NAO/NINS.
High resolution images obtained with Solar Optical Telescope on Hinode
Model instruments baseline specification and key open issues EUV/FUV High-Throughput Spectroscopic Telescope Toshifumi Shimizu (ISAS/JAXA) SCSDM-4.
Polar Magnetic Field Elena E. Benevolenskaya Stanford University SDO Team Meeting 2009.
Calculation of the Irradiance variations in the UV and extreme UV Margit Haberreiter PMOD/WRC, Davos, Switzerland IPC XI Sept 26 – Oct 15, 2010.
POLAR CORONAL HOLES A Link to Predicting Solar Maximum.
The Helioseismic and Magnetic Imager (HMI) on NASA’s Solar Dynamics Observatory (SDO) has continuously measured the vector magnetic field, intensity, and.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
P.Zacharias1, S. Bingert2 & H. Peter2 1ISSI, Bern, Switzerland
Diagnostic of Chromospheric Flare Plasma
Sun: General Properties
Solar atmosphere.
Coronal Structure CSI /PHYS Solar Atmosphere Fall 2004
Comprehensive analysis of the Geoeffective Solar Event of June 21, 2015: Effects on the Magnetosphere, Plasmasphere and Ionosphere Systems - part 1. Francesca.
Carrington Rotation 2106 – Close-up of AR Mr 2106 Bt 2106
Exploring Large-scale Coronal Magnetic Field Over Extended Longitudes With EUVI EUVI B EIT EUVI A 23-Mar UT Nariaki Nitta, Marc DeRosa, Jean-Pierre.
Introduction to Space Weather
The Solar Atmosphere II
Introduction to Space Weather
The Sun & It’s Solar System
Chapter 9 The Sun.
Observations of emerging and submerging regions with ASP and Solar-B
High-cadence Radio Observations of an EIT Wave
SIDC Space Weather Briefing
J. Todd Hoeksema Stanford University
SIDC Space Weather Briefing
SIDC Space Weather Briefing
Filament/Prominence Eruption Corona Mass Ejection (CME)
Presentation transcript:

Динамика магнитных полей в областях корональных дыр Беневоленская Е.Е., Понявин Ю. Д. ГАО РАН

Мы представляем результаты исследования динамики магнитных полей в областях пониженной плотности короны (корональных дырах) используя данные космических обсерваторий: Solar and Heliospheric Observatory ( SOHO) и Solar Dynamics Observatory (SDO). Магнитные данные представлены в виде компоненты магнитного поля по-лучу-зрения как для SOHO/MDI(Michelson Doppler imager) так и для SDO/HMI(Helioseismic and Magnetic Imager). Корональные данные в эмиссионных линиях крайнего ультрафиолета (193А, 195A, 284A) хорошо выявляют структуру и эволюцию корональных дыр и позволяют сопоставить их с динамикой магнитного поля на солнечном диске(SOHO/EIT, SDO/AIA). В крупномасштабном магнитном поле корональная дыра, обычно, оказываетя либо положительной либо отрицальной полярности, в то время как мелкомастабное магнитное поле показывает довольно сложную динамику. Мы обсуждаем влияние фильтрации магнитного поля и ее роль в определении динамики мелкомасштабного магнитного поля.

SOHO/MDI

Magnetic flux of small scale elements inside and outside the Coronal holes

Left panel : EIT synoptic frame in line FeXII (195A) on , 19:00UT. Right panel : Coronal hole inferred form EIT image. Two rectangular show boxes Inside the coronal hole (Box 1) and outside (Box 2). Box 2 Box 1

Box 2 Box 1 Box 2 Left panel : Magnetic frame for CR 1967, longitude of central meridian Is 177 deg. Right panels : magnetic frames in relative longitudes ( 0 deg correspondents to central meridian).

Box 2 Box 1 Left panel : EIT synoptic frame in line FeXII (195A) on , 13:00UT. Right panel : Coronal hole infrerred form EIT image. Two rectangular show boxes Inside the coronal hole (Box 1) and outside (Box 2).

Box 2 Box 1 Box 2 Left panel : Magnetic frame for CR 1967, longitude of central meridian Is 154 deg. Right panels : magnetic frames in relative longitudes ( 0 deg correspondents to central meridian).

Statistics for magnetic elements inside and outside coronal hole. The magnetic flux, area and number of magnetic elements (|B|>20 Gauss) are estimated inside Box 1 and Box 2 for 5 cases during the evolution of the coronal hole started on 16 September 2000, 19:00UT (Longitude of central meridian was 177 deg) and ended on 18 September 2000, 13:00UT (Longitude of central meridian was 154 deg). Size of box is 20 deg in longitude with step 0.1 deg and from 0.64 to 0.8 in sine latitude with step Box’s Area is about 2.7*10^20 cm^2. Outside the coronal hole (Box 2) Inside the coronal hole (Box 1) Relative area of positive polarity is about 51.7±0.7% 45.2±1.1% Total magnetic flux: (1.537±0.035)*10^21 Mx (1.9616±0.0361)*10^21 Mx Relative positive flux: 45.6±1.7% 27.6±1.1% Magnetic elements |B|>20Gauss Relative area of positive polarity is about 0.24±0.16% 0.19±0.06% Relative area of negative polarity is about 1.25±0.16% 3.7±0.1% Relative positive flux: 17.8±5.5% 2.9±.1% In both bases negative magnetic flux is dominated. The dominant negative magnetic flux in Coronal hole mostly comes from the evolving magnetic structures (faculae or plages).

SDO /AIA and SDO/HMI data for coronal holes investigations.

Channel namePrimary ion(s) Region of atmosphere * Char. log(T) white lightcontinuum photosphere Åcontinuum temperature minimum, photosphere ÅHe II chromosphere, transition region ÅC IV+cont. transition region + upper photosphere ÅFe IX quiet corona, upper transition region ÅFe XII, XXIV corona and hot flare plasma 6.1, ÅFe XIV active-region corona ÅFe XVI active-region corona ÅFe XVIII flaring regions (partial readout possible) ÅFe VIII, XX, XXIII flaring regions (partial readout possible) 5.6, 7.0, 7.2 AIA ( ATMOSPHERIC IMAGING ASSEMBLY )

I II

I

I

Выводы The dominant magnetic flux in Coronal hole mostly comes from the evolving magnetic structures (faculae or plages). It is observed the growth of the dominant polarity inside the coronal holes, while the total magnetic flux is decreasing.