Predicting Spontaneous Reactions

Slides:



Advertisements
Similar presentations
Electrochemistry Applications of Redox.
Advertisements

Electrochemistry Chapter 19
1 Electrochemistry Chapter 18, Electrochemical processes are oxidation-reduction reactions in which: the energy released by a spontaneous reaction.
Electrochemistry. It deals with reactions involving a transfer of electrons: 1. Oxidation-reduction phenomena 2. Voltaic or galvanic cell Chemical reactions.
Electrochemical Cells. Definitions Voltaic cell (battery): An electrochemical cell or group of cells in which a product-favored redox reaction is used.
19.2 Galvanic Cells 19.3 Standard Reduction Potentials 19.4 Spontaneity of Redox Reactions 19.5 The Effect of Concentration on Emf 19.8 Electrolysis Chapter.
Chapter 20 Electrochemistry.
Oxidation-Reduction (Redox) Reactions
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
JF Basic Chemistry Tutorial : Electrochemistry
ELECTROCHEMISTRY REDOX REVISITED! 24-Nov-97Electrochemistry (Ch. 21) & Phosphorus and Sulfur (ch 22)1.
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
Electrochemistry is the chemistry of reactions which involve electron transfer. In spontaneous reactions electrons are released with energy which can.
Electrochemistry Chapter 19.
Electrochemistry Chapter 19.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Calculation of the standard emf of an electrochemical cell The procedure is simple: 1.Arrange the two half reactions placing the one with.
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CHEM 163 Chapter 21 Spring minute review What is a redox reaction? 2.
Chapter 18 Electrochemistry. Chapter 18 Table of Contents Copyright © Cengage Learning. All rights reserved Balancing Oxidation–Reduction Equations.
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry Chapter 19. Voltaic Cells In spontaneous oxidation-reduction (redox) reactions, electrons are transferred and energy.
19.4 Spontaneity of Redox Reactions  G = -nFE cell  G 0 = -nFE cell 0 n = number of moles of electrons in reaction F = 96,500 J V mol = 96,500 C/mol.
Electrochemistry Chapter 5. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Commercial Voltaic Cells. 3.7…or Applications of Voltaic Cells…
Electrochemistry. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction (gain e -
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
Chapter There is an important change in how students will get their AP scores. This July, AP scores will only be available online. They will.
© 2015 Pearson Education, Inc. Chapter 20 Electrochemistry James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Electrochemistry Chapter 18. Electrochemistry is the branch of chemistry that deals with the interconversion of electrical energy and chemical energy.
Chapter 21 Electrochemistry. Voltaic Cells  Electrochemical cells used to convert chemical energy into electrical energy  Produced by spontaneous redox.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
CHAPTER SIX(19) Electrochemistry. Chapter 6 / Electrochemistry Chapter Six Contains: 6.1 Redox Reactions 6.2 Galvanic Cells 6.3 Standard Reduction Potentials.
Electrochemistry.
Electrochemistry Chapter 19.
Electrochemistry Chapter 19
Dr. Aisha Moubaraki CHEM 202
Redox Reactions and Electrochemistry
Oxidation-Reduction Reactions
Electrochemical cells
Electrochemistry Chapter 19
Chapter 19 Electrochemistry Semester 1/2009 Ref: 19.2 Galvanic Cells
Electrochemistry Chapter 19.
Chapter 20 Electrochemistry
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Chapter 20 Electrochemistry
Electrochemistry.
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Presentation transcript:

Predicting Spontaneous Reactions

Standard Electrode Potentials Standard reduction potential (E0) is the voltage associated with a reduction reaction at an electrode when all solutes are 1 M and all gases are at 1 atm. Reduction Reaction 2e- + 2H+ (1 M) H2 (1 atm) E0 = 0 V Standard hydrogen electrode (SHE) 19.3

E0 is for the reaction as written The more positive E0 the greater the tendency for the substance to be reduced The half-cell reactions are reversible The sign of E0 changes when the reaction is reversed Changing the stoichiometric coefficients of a half-cell reaction does not change the value of E0 19.3

Reduction Potentials The half-reaction with the more positive reduction potential ( higher on the chart) is reduced and the other half-reaction is forced to oxidize. Example: What spontaneous reaction occurs if Cl2 and Br2 are added to a solution of Cl- and Br-?

Standard Reduction Potentials (in Volts), 25oC Eo Reaction Eo F2 + 2e- ---> 2F- +2.87 Co3+ + e- ---> Co2+ +1.80 PbO2 + 4H+ + SO42- + 2e- ---> PbSO4(s) + 2H2O +1.69 MnO4- + 8H+ + 5e- ---> Mn2+ + 4H2O +1.49 PbO2 + 4H+ + 2e- ---> Pb2+ + 2H2O +1.46 Cl2 + 2e- ---> 2Cl- +1.36 Cr2O72- + 14H+ + 6e- ---> 2Cr3+ + 7H2O +1.33 O2 + 4H+ + 4e- ---> 2H2O +1.23 Br2 + 2e- ---> 2Br- +1.07

Example Continued: Cl2 + 2 e-  2 Cl- + 1.36 V Br2 + 2 e-  2 Br- +1.09 V Cl2 is more positive so it is reduced and Br2 is oxidized. Write Br2 to show oxidation reaction: 2 Br-  Br2 + 2e- -1.09 V Cl2 + 2 e-  2 Cl- + 1.36 V Cl2 + 2 Br-  Br2 + 2 Cl- .27 = EoCell

Spontaneous Reactions E0Cell = reduction + oxidation potential A positive Eocell means the reaction is spontaneous in that direction. A negative Eocell means the reverse reaction is spontaneous.

Standard Electrode Potentials E0 = 0.34 V cell E0 = Ecathode + Eanode cell Ecell = ECu /Cu + E H /H+ 2+ 2 0.34 = ECu /Cu + - 0 2+ ECu /Cu = 0.34 V 2+ Pt (s) | H2 (1 atm) | H+ (1 M) || Cu2+ (1 M) | Cu (s) Anode (oxidation): H2 (1 atm) 2H+ (1 M) + 2e- Cathode (reduction): 2e- + Cu2+ (1 M) Cu (s) H2 (1 atm) + Cu2+ (1 M) Cu (s) + 2H+ (1 M) 19.3

Cd is the stronger oxidizer What is the standard emf of an electrochemical cell made of a Cd electrode in a 1.0 M Cd(NO3)2 solution and a Cr electrode in a 1.0 M Cr(NO3)3 solution? Cd2+ (aq) + 2e- Cd (s) E0 = -0.40 V Cd is the stronger oxidizer Cd will oxidize Cr Cr3+ (aq) + 3e- Cr (s) E0 = -0.74 V Anode (oxidation): Cr (s) Cr3+ (1 M) + 3e- x 2 Cathode (reduction): 2e- + Cd2+ (1 M) Cd (s) x 3 2Cr (s) + 3Cd2+ (1 M) 3Cd (s) + 2Cr3+ (1 M) E0 = Ecathode + Eanode cell E0 = -0.40 + (+0.74) cell E0 = 0.34 V cell 19.3

Free Energy Change & Eocell When a reaction takes place in a voltaic cell it performs work W = nFEcell n = moles of e- transferred F = Faradays constant (96,485 C/mole e-) Ecell = cell voltage

Work and Ecell The maximum amount of work that a system cam do is equal to the negative of the change in Gibbs Free energy. -DG =welectric = nFEcell DG = -nFEcell DGo = -nFEocell (standard conditions) If Ecell = 0, the system is in equilibrium

Concentration and Ecell The cell potential gradually drops as the reactants are consumed. DG = DGo + RT ln Q R = gas constant T = temp (kelvin) Q = reaction quotient (original molarities)

Concentration and Ecell Substituting for DG and DGo -nFEcell = -nFEocell + RT ln Q nF The Nernst Equation Ecell = Eocell – RT ln Q Ecell = Eocell - .0592 V log Q (base 10 log) n

Spontaneity of Redox Reactions 19.4

What is the equilibrium constant for the following reaction at 250C What is the equilibrium constant for the following reaction at 250C? Fe2+ (aq) + 2Ag (s) Fe (s) + 2Ag+ (aq) = 0.0257 V n ln K Ecell Oxidation: 2Ag 2Ag+ + 2e- n = 2 Reduction: 2e- + Fe2+ Fe E0 = EFe /Fe + EAg /Ag 2+ + E0 = -0.44 + -0.80 E0 = -1.24 V 0.0257 V x n E0 cell exp K = 0.0257 V x 2 -1.24 V = exp K = 1.23 x 10-42 19.4

Fe2+ (aq) + Cd (s) Fe (s) + Cd2+ (aq) Will the following reaction occur spontaneously at 250C if [Fe2+] = 0.60 M and [Cd2+] = 0.010 M? Fe2+ (aq) + Cd (s) Fe (s) + Cd2+ (aq) Oxidation: Cd Cd2+ + 2e- n = 2 Reduction: 2e- + Fe2+ 2Fe E0 = EFe /Fe + ECd /Cd 2+ 2+ E0 = -0.44 + -(-0.40) - 0.0257 V n ln Q E E = E0 = -0.04 V - 0.0257 V 2 ln -0.04 V E = 0.010 0.60 E = 0.013 E > 0 Spontaneous 19.5

Charging a Battery When you charge a battery, you are forcing the electrons backwards (from the + to the -). To do this, you will need a higher voltage backwards than forwards. This is why the ammeter in your car often goes slightly higher while your battery is charging, and then returns to normal. In your car, the battery charger is called an alternator. If you have a dead battery, it could be the battery needs to be replaced OR the alternator is not charging the battery properly.

Batteries Dry cell Leclanché cell Zn (s) Zn2+ (aq) + 2e- Anode: Cathode: 2NH4 (aq) + 2MnO2 (s) + 2e- Mn2O3 (s) + 2NH3 (aq) + H2O (l) + Zn (s) + 2NH4 (aq) + 2MnO2 (s) Zn2+ (aq) + 2NH3 (aq) + H2O (l) + Mn2O3 (s) 19.6

Batteries Mercury Battery Anode: Zn(Hg) + 2OH- (aq) ZnO (s) + H2O (l) + 2e- Cathode: HgO (s) + H2O (l) + 2e- Hg (l) + 2OH- (aq) Zn(Hg) + HgO (s) ZnO (s) + Hg (l) 19.6

Batteries Lead storage battery Anode: Pb (s) + SO2- (aq) PbSO4 (s) + 2e- 4 Cathode: PbO2 (s) + 4H+ (aq) + SO2- (aq) + 2e- PbSO4 (s) + 2H2O (l) 4 Pb (s) + PbO2 (s) + 4H+ (aq) + 2SO2- (aq) 2PbSO4 (s) + 2H2O (l) 4 19.6

Solid State Lithium Battery Batteries Solid State Lithium Battery 19.6

Batteries A fuel cell is an electrochemical cell that requires a continuous supply of reactants to keep functioning Anode: 2H2 (g) + 4OH- (aq) 4H2O (l) + 4e- Cathode: O2 (g) + 2H2O (l) + 4e- 4OH- (aq) 2H2 (g) + O2 (g) 2H2O (l) 19.6

Corrosion 19.7

Cathodic Protection of an Iron Storage Tank 19.7

Electrolysis is the process in which electrical energy is used to cause a nonspontaneous chemical reaction to occur. 19.8

Electrolysis of Water 19.8

Chemistry In Action: Dental Filling Discomfort Hg2 /Ag2Hg3 0.85 V 2+ Sn /Ag3Sn -0.05 V 2+ Sn /Ag3Sn -0.05 V 2+

Electrolysis and Mass Changes charge (Coulombs) = current (Amperes) x time (sec) 1 mole e- = 96,500 C = 1 Faraday 1 amp = 1 Coulomb / sec 19.8

How much Ca will be produced in an electrolytic cell of molten CaCl2 if a current of 0.452 A is passed through the cell for 1.5 hours? Anode: 2Cl- (l) Cl2 (g) + 2e- Cathode: 2 mole e- = 1 mole Ca Ca2+ (l) + 2e- Ca (s) Ca2+ (l) + 2Cl- (l) Ca (s) + Cl2 (g) mol Ca = 0.452 C s x 1.5 hr x 3600 s hr 96,500 C 1 mol e- x 2 mol e- 1 mol Ca x = 0.0126 mol Ca = 0.50 g Ca 19.8