Polarized Electrons for Polarized Positrons A Proof-of-Principle Experiment P. Adderley 1, A. Adeyemi 4, P. Aguilera 1, M. Ali, H. Areti 1, M. Baylac 2,

Slides:



Advertisements
Similar presentations
Journées Instrumentation du GDR Nucléon 8-9 Avril 2008, CEA Saclay Polarized Positrons at the Jefferson Laboratory (i) Physics motivations (ii) Principe.
Advertisements

POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.
5 MeV Mott Measurement for CEBAF Operations group Joe Grames, Marcy Stutzman February 14 th, 2007 Sir Nevill F. Mott at the ceremony with his Nobel Prize.
Gamma-Ray Spectra _ + The photomultiplier records the (UV) light emitted during electronic recombination in the scintillator. Therefore, the spectrum collected.
Compton polarimetry for EIC Jefferson Lab Compton Polarimeters.
1 Electron Beam Polarimetry for EIC/eRHIC W. Lorenzon (Michigan) Introduction Polarimetry at HERA Lessons learned from HERA Polarimetry at EIC.
Pair Spectrometer Design Optimization Pair Spectrometer Design Optimization A. Somov, Jefferson Lab GlueX Collaboration Meeting September
EPAC June 2003 The EPAC June 2003 Questions 1. Clarify the Motivation for the Proposal. 2. How to ensure the e+ polarimeter works right away? 3. What is.
5 th Rencontres du Vietnam - Aug. 7, 2004 Polarized Positrons…E166 A.W.Weidemann 1 Introduction (What, who) Motivation (Why) Experiment and Polarimetry.
Accelerator hall of the S- DALINAC – electron energies from 2 to 130 MeV available – cw and pulsed beam operation possible – source for polarized electron.
Left: The polarization of the undulator radiation as a function of energy. Right: Calculated positron longitudinal polarization as a function of energy.
K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.
Undulator-Based Production of Polarized Positrons An experiment in the 50 GeV Beam in the SLAC FFTB E-166 Undulator-Based Production of Polarized Positrons.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) K.T. McDonald, J.C. Sheppard, Co-Spokespersons SLAC Experimental Program Advisory.
K. Moffeit 6 Jan 2005 WORKSHOP Machine-Detector Interface at the International Linear Collider SLAC January 6-8, 2005 Polarimetry at the ILC Design issues.
Precision Test of Mott Polarimetry in the MeV Energy Range P.A. Adderley 1, T. Gay 2, J. Grames 1, J. Hansknecht 1, C. Horowitz 3, M.J. McHugh 4, A.K.
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
AESOP: Accurate Electron Spin Optical Polarimeter Marcy L. Stutzman, Matt Poelker; Jefferson Lab Timothy J. Gay; University of Nebraska.
PosiPol June 23-26, 2009, Lyon Polarized Electrons for Polarized Positrons JLabe + (i) Physics motivations (ii) JLab (iii) Technical challenges.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Positron Beam for Measurements of Generalized Parton Distributions Generalized Parton Distributions e JLab (i) Generalized parton distributions (ii)
Ion Polarization Control in MEIC Rings Using Small Magnetic Fields Integrals. PSTP 13 V.S. Morozov et al., Ion Polarization Control in MEIC Rings Using.
Positron Experiments at Jlab and ALLS Paul Guèye Hampton University April 7, 20111Paul Gueye - Hampton University.
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Compton polarimetry for EIC Jefferson Lab Compton Polarimeters.
12 GeV CEBAF INJECTOR Reza Kazimi Users Group Annual Meeting June 4, 2012.
1 The Longitudinal Polarimeter at HERA Electron Polarization at HERA Laser System & Calorimeter Statistical and Systematic Precision Laser Cavity Project.
EUROTeV WP4 Report Polarised Positron Source Jim Clarke, on behalf of the WP4 team DESY Zeuthen STFC (Daresbury and RAL) University of Durham University.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) The International Polarized Positron Production Collaboration K.T. McDonald, J.C.
Polarimetry Report Sabine Riemann on behalf of the DESY/HUB group January 24, 2008 EUROTeV Annual Meeting, Frascati.
ILC/CLIC e + generation working group Jim Clarke, STFC Daresbury Laboratory and Louis Rinolfi, CERN.
Polarized Positrons at the Jefferson Laboratory Idaho State University, Idaho Accelerator Center, Jefferson Lab, LPC Clermont-Ferrand, LPSC Grenoble, Old.
(i) Physics motivations (ii) The PEPPo experiment (iii) PEPPo measurements (iv) Outlook Eric Voutier Institut de Physique Nucléaire d’Orsay Orsay, France.
Polarized Positrons at the Jefferson Laboratory Idaho State University, Idaho Accelerator Center, Jefferson Lab, LPC Clermont-Ferrand, LPSC Grenoble, Old.
Compton polarimetry for EIC. Outline Polarized electron beam Compton process Compton polarimeters at Jefferson Laboratory – Parity experiments at Jlab.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
Polarized Electron Footprint at JLab P. Adderley, J. Clark, J. Dumas ǂ, A. Freyberger, J. Hansknecht, J. Grames, M. Poelker, K. Surles-Law, M. Stutzman,
1 A Proposal for Compton Electron Detector R&D Stephan Aune 9, Alexandre Camsonne 1*, Wouter Deconinck 8, Dipankgar Dutta 4, Gregg B. Franklin 7, David.
PAC38, Newport News, August 22-26, 2011 PEPPo a Proof-of-Principle Experiment Polarized Electrons for Polarized Positrons A. Adeyemi 4, P. Aguilera 1,
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
? Users Town MeetingNewport News, March 16, 2012 Polarized Positrons for Nuclear Physics at Jefferson Lab (i) Electromagnetic form factors (ii) Generalized.
Mott Electron Polarization Results Riad Suleiman July 10, 2013.
Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Polarized Electron Beams.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy The Department.
(i) Low-energy positron physics (ii) Slow positron physics (iii) Polarized positron production (iv) Conclusions Eric Voutier Institut de Physique Nucléaire.
Dollan, Laihem, Lohse, Schälicke, Stahl 1 Monte Carlo based studies of polarized positrons source for the International Linear Collider (ILC)
PRE-CONCEPTUAL DESIGN OF A CW POSITRON SOURCE FOR JLAB (2013-LDRD-02) JOE GRAMES LDRD PROPOSAL REVIEW - JULY 17, 2013 PROJECT OVERVIEW THE TEAM LDRD EVALUATION.
Prospects for Positron Beams at JLab e JLab (i) Physics motivations (ii) Polarized positron production (iii) PEPPo (iv) Perspectives (v) Conclusions.
PEPPo a Proof-of-Principle Experiment
LDRD Brainstorming Session
Proton Form Factor Ratio GE/GM from Double Spin Asymmetry with
Polarized Electrons for Polarized Positrons
Mott Polarimeter at CEBAF
Polarized Electrons for Polarized Positrons
A.P. Potylitsyn, I.S. Tropin Tomsk Polytechnic University,
Production of Highly Polarized Positrons MeV Polarized Electrons
Calibration of the PEPPo Polarimetry (a tale of two polarimeters)
Progress with Spin Tracking in GEANT4
ILC/CLIC e+ generation working group
CEBAF Injector Overview
5 MeV Mott Measurement for CEBAF Operations group
QWeak Collaboration Meeting
E166 - LEPOL - Low Energy Positron Polarimetry for the ILC
Capture and Transmission of polarized positrons from a Compton Scheme
Polarized Positrons at Jefferson Lab
Production of Magnetized Electron Beam from a DC High Voltage Photogun
PEPPo : Polarized Positron Production
Presentation transcript:

Polarized Electrons for Polarized Positrons A Proof-of-Principle Experiment P. Adderley 1, A. Adeyemi 4, P. Aguilera 1, M. Ali, H. Areti 1, M. Baylac 2, J. Benesch 1, G. Bosson 2, B. Cade 1, A. Camsonne 1, L. Cardman 1, J. Clark 1, P. Cole 5, S. Covert 1, C. Cuevas 1, O. Dadoun 3, D. Dale 5, J. Dumas 1,2, E. Fanchini 2, T. Forest 5, E. Forman 1, A.Freyberger 1, E. Froidefond 2, S. Golge 6, J. Grames 1, P. Guèye 4, J. Hansknecht 1, P. Harrell 1, J. Hoskins 8, C. Hyde 7, R. Kazimi 1, Y. Kim 1,5, D. Machie 1, K. Mahoney 1, R. Mammei 1, M. Marton 2, J. McCarter 9, M. McCaughan 1, M. McHugh 10, D. McNulty 5, T. Michaelides 1, R. Michaels 1, C. Muñoz Camacho 11, J.-F. Muraz 2, K. Myers 12, A.Opper 10, M. Poelker 1, J.-S. Réal 2, L. Richardson 1, S. Setiniyazi 5, M. Stutzman 1, R. Suleiman 1, C. Tennant 1, C.-Y. Tsai 13, D. Turner 1, A. Variola 3, E. Voutier 2, Y. Wang 1, Y. Zhang 12 1 Jefferson Lab, Newport News, VA, US 2 LPSC, Grenoble, France 3 LAL, Orsay, France 4 Hampton University, Hampton, VA, USA 5 Idaho State University & IAC, Pocatello, ID, USA 6 North Carolina Central University, Durham, NC, USA 7 Old Dominion University, Norfolk, VA, US 8 The College of William & Mary, Williamsburg, VA, USA 9 University of Virginia, Charlottesville, VA, USA 10 George Washington University, Washington, DC, USA 11 IPN, Orsay, France 12 Rutgers University, Piscataway, NJ, USA 13 Virginia Tech, Blacksburg, VA, USA SLAC E-166 Collaboration International Linear Collider Project Jefferson Science Association Initiatives Award

E.A. Kuraev, Y.M. Bystritskiy, M. Shatnev, E.Tomasi-Gustafsson, PRC 81 (2010) E.G. Bessonov, A.A. Mikhailichenko, EPAC (1996) A.P. Potylitsin, NIM A398 (1997) 395 Polarized Bremmstrahlung + Pair Creation Polarized Bremsstrahlung P circ (  ) / P z (e - ) E  / T e- Polarized Pair Creation P z (e + ) / P circ (  ) T e+ / (E  – 2m e+ )

3 e-e- T1T1 P e- Polarized Electrons (<10 MeV) strike production target BREMSSTRAHLUNG Longitudinal e - (P e- ) produce elliptical  whose circular (P  ) component is proportional to P e-. S1S1 D D S2S2 P e+ Positron Transverse and Momentum Phase Space Selection e+e+  PAIR PRODUCTION  produces pairs; P  transfers to e + into longitudinal (P e+ ) and transverse polarization averages to zero. T2T2 PTPT Calorimeter Compton Transmission Polarimeter E e = 6.3 MeV I e = 1 µA T 1 = 1 mm W Geant4 PEPPo J. Dumas, Ph.D. Dissertation, University Joseph Fourier, Grenoble (2010) JLAB E11-105: PEPPo Experiment

Compton Polarimeter (DESY) Collection Magnets (Princeton/SLAC) Pair Creation Target PEPPo measured the polarization transfer from 8.2 MeV/c longitudinal electrons to longitudinal positrons in the MeV/c momentum range. Installation CEBAF Injector

p e- = 8.3 MeV/c p e+ = 4 MeV/c P e- = 83.7% ± 0.6% (stat) ± 2.8% (sys) P T = 7.06% ± 0.05% (sys1) ± 0.07% (sys2) A. Adeyemi, Ph.D. Dissertation, Hampton University (in progress) A. Adeyemi, IPAC’15

Polarized Positron Source ? 10W of e- beam power was sufficient for PEPPo demo (10’s pA) Positron yield scales with electron beam power (Energy x Current) kW converter target ( MeV) x (1-10 mA e-) ~ 1  A of e + Requires high power target/radiator and optimized collection Attractive if energy kept low to suppress neutron production

BACK UP SLIDES

Electron calibration Measured vs. Geant4 Positron & Electron AP Geant4 Simulation

P(e + ) = 73 ± 15 (stat) ± 19 (syst) % Inverse Compton Backscattering (KEK) T. Omori et al, PRL 96 (2006) Helical Undulator (SLAC E166) G. Alexander et al, PRL 100 (2008) P(e + ) = 80 ± 7 (stat) ± 9 (syst) % 47.7GeV Polarized  + Decay L.A. Page & M. Heinberg. Phys. Rev. 106(6): (1957) Polarized due to parity non-conservation in the weak interaction P(e + ) ~ 40 % Sokolov-Ternov Effect D. Barber, AIP Conf. Proc. 588, 338 (2001) HERA 27.5 GeV e+/e- P(e + ) ~ 70 % What about Polarization ?

PEPPo used the CEBAF pre-injector, taking advantage of existing electron beam diagnostics to determine with precision properties of the polarized electron beam. Beam Polarization 30 Hz fast helicity reversal (delayed) Slow laser helicity reversal (waveplate) 4  Spin Rotator Beam Energy Up to 8.25 MeV/c Mott Electron Polarization Measurement dP/P<3% Energy Measurement dE/E<0.5% PEPPo Laser Low Beam Intensities 1  A down to 10’s pA 10 PEPPo at the CEBAF Injector

S 1 current optimization at 5.5 MeV/c S1 current (A ) T 2 (arbitrary ) 11 T1T1 T2T2 S1S1 S2S2 D D e-e- e-e- Degraded Electron Collection p e- = 8.2 MeV/c e - Momentum [MeV/c] Using Degraded Electrons to Optimize Positron Collection “Low Power” exp’t generated pA’s of e+ Degraded electrons allowed optimizing magnets with measurable currents ~10’s nA

T1T1 T2T2 S1S1 S2S2 D D e+e+ e-e- Positron Collection Na 22 Two NaI detectors measured coincidence of back-to-back photons emitted by annihilation of positrons in a viewscreen. 12 p e- = 8.2 MeV/c Viewscreen deg to beam line 99.5% aluminum oxide Al 2 O 3 0.5% chromium doped Al 2 O 3 /Al 2 O 3 Cr 2 O 3 Positron Detection by Annihilation Coincidence

13 Detected e+ rate (1 e + per e - ) Solid Angle (0.1 sr) GEANT annihilation probability (1/400) Coincidence detector efficiency 511keV) 1 e + per 10 6 e - (consistent with proposal) Measuring Positron Yield

Electrons or Positrons radiate polarized photons by Bremmstrahlung in reconversion target Energy dependent Compton scattering of photons transmitted through polarized target correspond to polarization of incoming Electrons or Positrons (aligned or anti-aligned). Bremmstrahlung photon spectrum requires energy-dependent analyses Energy binning Energy integration μ 1 - Compton absorption coefficient L - target length P 3 - photon polarization (long.) P e - electron/positron polarization P T - target polarization A e - analyzing power 14  Reconversion Target (Densimet D17K) 90.5% W 7% Ni 2.5% Cu e-e- P e- e+e+ P e+ Measuring Positron Polarization: Compton Transmission Polarimeter

CALORIMETERCALORIMETER e+  Trigger Scintillator 10mil Al window Reconversion Target keV production from e+ annihilation Bremsstrahlung end-point (beam energy – m e+ ) e MeV/c Scintillator Coincidence trigger PMT5 Positrons are detected in coincidence between a thin trigger scintillator placed prior to the reconversion target and the central crystal (PMT5) and tagged by e- helicity. Positron Polarimetry

16 What about positrons at Jefferson Lab ? Positrons for JLAB Nuclear Physics 100 nA – 10  A (CW) Polarized

17 CW Positron Source at CEBAF S. Golge, Ph.D. Dissertation, Old Dominion University (2010) Combined Function Magnet Solution p (e-) = 126 MeV/c p (e + ) = 126 ± 1.0 MeV/c  t = 1.8 ps (to maintain dp/p < )  x/  y = 1.6/1.7 mm.mrad (<5 mm-mrad) Efficiency is ~ 2.9x – 10 uA => 0.35 – 35 mA 100kW to 1MW ! 126 MeV/10 mA

18 UITF 10 MeV/1 nA facility to test HDIce Compatible with <1 nA e+ source Keep energy / photo-neutron yield small Add local shielding Positron Opportunities at Jefferson Lab ? LERF High current : MeV Test bed for CW concept ERL dump : MeV Low intensity source CEBAF Improve conversion efficiency ~100uA / 11 GeV ~1 uA / 12 GeV (Hall D) Manage high power Shielded Radiator Accessible conversion target

19 Outlook & Opportunities Compelling Motivation International Workshop on Positrons at Jefferson Lab (2009) High Energy Nuclear Physics at CEBAF Dark matter searches Low Energy Materials Science Accelerator R&D Track Record J. Dumas, PhD, PEPPo Conceptual Design (2010) S. Golge, PhD, CW Positron Source Design (2010) PEPPo, PAC A Rated E (2012) L. Adeyemi, PhD, PEPPo Proof-of-Principle (expected 2015) Future Directions ? P. Degtiarenko, J. Grames, E. Voutier, Integrated Conceptual Design (Unfunded 2013 LDRD) Consideration being given for low energy positron program at LERF Exploit accelerator expertise & facilities to develop integrated design and address challenges Some R&D Opportunities… High Current Electron or Photon “Driver” High Power Conversion Target Collection Optimization – Split Radiator : Conversion Target Simultaneously managing electrons and positrons