Мэдээллийн Технологийн Сургууль Монгол Улсын Их Сургууль Some features of creating GRID structure for simulation of nanotransistors Bolormaa Dalanbayar,

Slides:



Advertisements
Similar presentations
Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill.
Advertisements

Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.
Modelling of Defects DFT and complementary methods
Research Projects Dr Martin Paul Vaughan available from available from
Control of transport through Fano resonances in molecular wires T. A. Papadopoulos, I. M. Grace and C. J. Lambert Department of Physics, Lancaster University,
First Principle Electronic Structure Calculation Prof. Kim Jai Sam ( ) Lab. 공학 ( ) Students : Lee Geun Sik,
. Chapter 1. Introduction, perspectives, and aims. On the science of simulation and modelling. Modelling at bulk, meso, and nano scale. (2 hours). Chapter.
Quantum Mechanics and Force Fields Hartree-Fock revisited Semi-Empirical Methods Basis sets Post Hartree-Fock Methods Atomic Charges and Multipoles QM.
Computational Chemistry
Numerical Parallel Algorithms for Large-Scale Nanoelectronics Simulations using NESSIE Eric Polizzi, Ahmed Sameh Department of Computer Sciences, Purdue.
Are there ab initio methods to estimate the singlet exciton fraction in light emitting polymers ? William Barford The title of my talk is “What determines.
Transport Calculations with TranSIESTA
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Gerhard Klimeck Applied Cluster Computing Technologies Group Quantum and semi-classical transport in RTDs using NEMO 1-D Gerhard Klimeck Jet Propulsion.
Realization of The DFT (Density Functional Theory) calculations with KLI (Krieger-Li-Iafrate) - approximation of OEP (Optimized Effective Potential) in.
David-Alexander Robinson Sch., Trinity College Dublin Dr. Anderson Janotti Prof. Chris Van de Walle Computational Materials Group Materials Research Laboratory,
Large-Scale Density Functional Calculations James E. Raynolds, College of Nanoscale Science and Engineering Lenore R. Mullin, College of Computing and.
Quantum Monte Carlo for Electronic Structure Paul Kent Group Meeting - Friday 6th June 2003.
Tutorial: From Semi-Classical to Quantum Transport Modeling
FUNDAMENTALS The quantum-mechanical many-electron problem and Density Functional Theory Emilio Artacho Department of Earth Sciences University of Cambridge.
MATERIALS FOR NANOTECHNOLOGIES CMAST (Computational MAterials Science & Technology) Virtual Lab Computational Materials Science.
Excitons in Single Wall Dr. Fazeli and Dr. Mozaffari
Lectures Introduction to computational modelling and statistics1 Potential models2 Density Functional.
Efficient solution algorithm of non-equilibrium Green’s functions in atomistic tight binding representation Yu He, Lang Zeng, Tillmann Kubis, Michael Povolotskyi,
Practical quantum Monte Carlo calculations: QWalk
ENEE 704 Summary Final Exam Topics. Drift-Diffusion 5 Equations, Five Unknowns. – n, p, Jn, Jp,  Solve Self-Consistently Analytical Method: – Equilibrium:
R. Martin - Pseudopotentials1 African School on Electronic Structure Methods and Applications Lecture by Richard M. Martin Department of Physics and Materials.
Gerousis Toward Nano-Networks and Architectures C. Gerousis and D. Ball Department of Physics, Computer Science and Engineering Christopher Newport University.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Generation of Empirical Tight Binding.
Influence of carrier mobility and interface trap states on the transfer characteristics of organic thin film transistors. INFM A. Bolognesi, A. Di Carlo.
PA4311 Quantum Theory of Solids Quantum Theory of Solids Mervyn Roy (S6) www2.le.ac.uk/departments/physics/people/mervynroy.
Computational Aspects of Multi-scale Modeling Ahmed Sameh, Ananth Grama Computing Research Institute Purdue University.
Development of an analytical mobility model for the simulation of ultra thin SOI MOSFETs. M.Alessandrini, *D.Esseni, C.Fiegna Department of Engineering.
APS -- March Meeting 2011 Graphene nanoelectronics from ab initio theory Jesse Maassen, Wei Ji and Hong Guo Department of Physics, McGill University, Montreal,
IEE5328 Nanodevice Transport Theory
Fundamentals of DFT R. Wentzcovitch U of Minnesota VLab Tutorial Hohemberg-Kohn and Kohn-Sham theorems Self-consistency cycle Extensions of DFT.
Density Functional Theory A long way in 80 years L. de Broglie – Nature 112, 540 (1923). E. Schrodinger – 1925, …. Pauli exclusion Principle.
PA4311 Quantum Theory of Solids Quantum Theory of Solids Mervyn Roy (S6) www2.le.ac.uk/departments/physics/people/mervynroy.
Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill.
Optimization of Numerical Atomic Orbitals
TURBOMOLE Lee woong jae.
Thomas Halverson and Bill Poirier Texas Tech University Department of Physics
F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band.
Electric field which acts on core C due to the valence electrons and the other cores. Where is a cutoff function for the electric field inside the core.
Javier Junquera Introduction to atomistic simulation methods in condensed matter Alberto García Pablo Ordejón.
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
Introduction to the SIESTA method SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE University of Illinois at Urbana-Champaign, June 13-23, 2005 Some technicalities.
Quantum Capacitance Effects In Carbon Nanotube Field-Effect Devices
Advanced methods of molecular dynamics 1.Monte Carlo methods 2.Free energy calculations 3.Ab initio molecular dynamics 4.Quantum molecular dynamics 5.Trajectory.
PA4311 Quantum Theory of Solids Quantum Theory of Solids Mervyn Roy (S6) www2.le.ac.uk/departments/physics/people/mervynroy.
© copyright 2011 William A. Goddard III, all rights reservedCh121a-Goddard-L14 Periodic Boundary Methods and Applications: Ab-initio Quantum Mechanics.
Comp. Mat. Science School Electrons in Materials Density Functional Theory Richard M. Martin Electron density in La 2 CuO 4 - difference from sum.
Spin transport at the atomic scale Alexandre Reily Rocha and Stefano Sanvito Computational Spintronics Group Physics Department, Trinity College Dublin,
Electronic and Mechanical Materials Properties from DFT Calculations
Semiconductor Device Modeling
BY SELLAVEL E (CA15M006) Guided By Prof.B.Viswanathan
Multiscale Materials Modeling
Contact Resistance Modeling in HEMT Devices
Production of an S(α,β) Covariance Matrix with a Monte Carlo-Generated
The Materials Computation Center. Duane D. Johnson and Richard M
Band-structure calculation
Prof. Sanjay. V. Khare Department of Physics and Astronomy,
Welcome to The Workshop
Ⅱ HOMO-LUMO gap and dispersion of HOMO
Dynamical mean field theory: In practice
Metastability of the boron-vacancy complex (C center) in silicon: A hybrid functional study Cecil Ouma and Walter Meyer Department of Physics, University.
Solving Equations 3x+7 –7 13 –7 =.
Atoms, Orbitals & Functional Groups
Ab-initio nuclear structure calculations with MBPT and BHF
Presentation transcript:

Мэдээллийн Технологийн Сургууль Монгол Улсын Их Сургууль Some features of creating GRID structure for simulation of nanotransistors Bolormaa Dalanbayar, Batnyam Battulga National Universiry of Mongolia School of Information Technology

Мэдээллийн Технологийн Сургууль Outline i. About SIT ii. Why parallel computation in SIT curricula? iii. Nanoelectronics development iv. Siesta and parallel processing in SIT v. Conclusion

Мэдээллийн Технологийн Сургууль Introduction Presented work – small GRID structure based Unicore software technology DFT simulation of a bulk silicon using Siesta package

Мэдээллийн Технологийн Сургууль School of Information Technology 1967 – First Radio-Electronic Engineers 1990 – Electronics Department 2002 – School of Information Technology

Мэдээллийн Технологийн Сургууль School of Information Technology Departments: Electronics Computer and Information Technology Communication Technology Research centers: Research center of NLP Research center of Mobile and Embedded technology Animation studio

Мэдээллийн Технологийн Сургууль Why parallel computation in SIT curricula? Nano electronics in Electronics curricula : 2006 Fundamentals of Nano electroncs Elective course in bachelor degree 2008 Specialization in master degree 2011 first masters

Мэдээллийн Технологийн Сургууль Why parallel computation in SIT curricula? Matlab simulation (Landauer-Buttiker formalism, SC Iteration, NEGF,…) First ab-initio simulation in Siesta (Linear-scaling DFT )

Мэдээллийн Технологийн Сургууль Nanoelectronics development Nanotransistor development: - Experimental - Computational Nanotransistor modeling : - physical process simulation (ab initio,…) - characteristic simulation (NEGF approach,…) - TCAD (Silvaco, Synopsis…)

Мэдээллийн Технологийн Сургууль Simulation and Method Solving the 3D Poisson equation for the electrostatic potential Solving the 2D, 1D Schrodinger equations Solving the coupled or uncoupled nonequilibrium Green function (NEGF) transport equations for the electron charge density. Numerical simulation of I D

Мэдээллийн Технологийн Сургууль Simulation and Method: Matlab The computed log(I D ) vs. V G transfer characteristics of a ballistic SNWFET with a SiO 2 insulator layer (k = 3:9 and 25)

Мэдээллийн Технологийн Сургууль Simulation and Method: Matlab The computed I D vs. V D common source characteristics of ballistic SNWFET with a HfO 2 insulator layer (k = 3:9 and 25)

Мэдээллийн Технологийн Сургууль Nanoelectronics development Many electron problem: Quantum Chemistry (Hartree-Fock, CI…) Quantum Monte Carlo Perturbation theory (propagators) Density Functional Theory (DFT) Very efficient and general BUT implementations are approximate and hard to improve (no systematic improvement)

Мэдээллийн Технологийн Сургууль Siesta and parallel processing in SIT Nano transistor (device physics) – atomistic models Gabriele Penazzi, PhD dissertation Rome, June 2010.

Мэдээллийн Технологийн Сургууль Siesta and parallel processing in SIT Nano transistor (device physics) continuous models Gabriele Penazzi, PhD dissertation Rome, June 2010.

Мэдээллийн Технологийн Сургууль Siesta and parallel processing in SIT Atomistic models: - Siesta - GROMACS - VASP - CASDEP - ABINIT …

Мэдээллийн Технологийн Сургууль Siesta and parallel processing in SIT Siesta Methods: - Born-Oppenheimer (relaxations, mol.dynamics) - DFT (LDA, GGA) - Pseudopotentials (norm conserving,factorised) - Numerical atomic orbitals as basis (finite range) - Numerical evaluation of matrix elements (3Dgrid)

Мэдээллийн Технологийн Сургууль Siesta and parallel processing in SIT Pseudopotential of Si:

Мэдээллийн Технологийн Сургууль Siesta and parallel processing in SIT Carrier charge:

Мэдээллийн Технологийн Сургууль Siesta and parallel processing in SIT Bulk Si

Мэдээллийн Технологийн Сургууль Siesta and parallel processing in SIT Used UNICORE 6

Мэдээллийн Технологийн Сургууль Conclusion Double site configuration

Мэдээллийн Технологийн Сургууль Conclusion Performed calculations in double site UNICORE GRID site: - Matlab code of NEGF - Feature selection Matlab code - DFT Siesta code - Band structure Siesta code

Мэдээллийн Технологийн Сургууль Conclusion Future plan: - Development of cluster - Testing of Torque - Repeating our calculations - Creation of education site map in UB

Мэдээллийн Технологийн Сургууль Thank you for attention