The phase problem in protein crystallography. The phase problem in protein crystallography.

Slides:



Advertisements
Similar presentations
Unit 3 Part 2 The Periodic Table ICP Mr. Patel SWHS.
Advertisements

One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
Copyright 2011 CreativeChemistryLessons.comCreativeChemistryLessons.comRemember! Metals LOSE Electrons (CATIONS)Metals LOSE Electrons (CATIONS) Non-Metals.
The Nature of Molecules
Periodic Table – Filling Order
THE PERIODIC TABLE.
Energy Level Diagrams E
Neutron (no charge) Hydrogen 1 Proton 1 Electron Oxygen 8 Protons 8 Neutrons 8 Electrons a. b. proton (positive charge) electron (negative charge) Copyright.
Development of the Periodic Table. Mendeleev’s Periodic Table "...if all the elements be arranged in order of their atomic weights a periodic repetition.
Binary Compounds Metals (variable oxidation) + Nonmetals.
Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca.
CH. 2 atomic models electronic configuration oxidation numbers
Unit 4 The Periodic Table Chemistry I Mr. Patel SWHS.
Periodic Table of Elements. gold silver helium oxygen mercury hydrogen sodium nitrogen niobium neodymium chlorine carbon.
H 1 N 7 P 15 As 33 Sb 51 Bi 83 O 8 S 16 Se 34 Te 52 Po 84 F 9 Cl 17 Br
Chemical Families. Groups of Elements   Lanthanides Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl.
Trends of the Periodic Table
Periodic Table Of Elements
Metals, Nonmetals, Metalloids
Ions Wednesday January 8, 2014
s p d (n-1) f (n-2) 6767 Periodic Patterns 1s1s1s1s 2s2s2s2s 3s3s3s3s 4s4s4s4s 5s5s5s5s 6s6s6s6s 7s7s7s7s 3d3d3d3d 4d4d4d4d 5d5d5d5d 6d6d6d6d 1s1s1s1s.
Organization of The Periodic Table Mrs. Russotto.
Bellwork, Fri. Sept. 14 Which element is LEAST likely to combine with another element to form a molecule? -Chlorine (Cl), a halogen -Iron (Fe), a metal.
Modern Periodic Table Objective:
Electron Configuration Filling-Order of Electrons in an Atom.
Alkali Metals, Group 1 H N OF Cl Br I Li Na K Fr Be Mg Ca Ra Sc Ac He Ne Ar Kr Rn Ti V Cr Mn Fe Co Ni Cu ZnGa Ge As Se Rb Sr Y Xe Zr Nb Mo Tc Ru Rh Pd.
Electron Configuration
1 Hydro gen 1 3 Li Lithi um 2 1 Na Sodiu m 3 1919 K Potas sium 4 3737 Rb Rubid ium 5 5 Cs Cesiu m 6 8787 Fr Franc ium 7 4 Be Beryl lium 1212 Mg Magne sium.
D x 2 – y 2 Lanthanides Actinides G block Inrt P x P y P z D x y D x z D y z D z 2 New periodic table of elements Nodal point.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Periodic Table of Elements
Chapter 6 Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Electron Configuration
S2 SCIENCE CHEMICAL REACTIONS
Periodic Table of Elements
TOPIC 0C: Atomic Theory.
1.7 Trends in the Periodic Table
Introduction To Chemistry
The Periodic Table and Periodic Law
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
Chemeketa Community College
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
KS4 Chemistry The Periodic Table.
Groups of Elements 1A 8A H He 2A 3A 4A 5A 6A 7A Li Be B C N O F Ne Na
Do Now: Answer the following:
Emission of Energy by Atoms and Electron Configurations
Trends of the Periodic Table
Periodic Table Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 74.
Periodic Trends Atomic Size Ionization Energy Electron Affinity
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
Periodic Table of the Elements
ТАБЛИЦА Б. Е. ЛИПОВА «STRUCTURE OF ATOMIC NUCLEUS”
Electron Configuration
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
What Things Do I have To Memorize in AP Chem?
PERIODIC TABLE OF ELEMENTS
Journal: Choose one of these Periodic Table ideas or come up with your own. Explain what different CATEGORIES/SECTIONS you would make to group your “Elements”
Electron Configurations
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Line Spectra and the Bohr Model
The Periodic Table Part I – Categories of Elements
1.5 Periodic Table: History & Trends
PeRiOdIc TaBlE of ElEmEnTs
Electron Configurations and the Periodic Table
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →
Presentation transcript:

The phase problem in protein crystallography

The phase problem in protein crystallography

Bragg diffraction of X-rays (photon energy about 8 keV, 1.54 Å)

Structure factors and electron density are a Fourier pair

The problem is that the raw data are the squares of the modulus of the Fourier transform. That´s the famous phase problem.

In protein crystallography, there are several ways to get the phases: Molecular replacement Heavy atom methods Direct methods Non-standard methods

Mol A: GPGVLIRKPYGARGTWSGGVNDDFFH... Mol B: GPGIGIRRPWGARGSRSGAINDDFGH... Mol A Mol B ? Molecular replacement

If we have phases from a similar model... Amplitudes: Manx Phases: Manx Amplitudes: Cat Phases: Cat Amplitudes: Cat we can use Phases: Manx...we can combine them with the experimental amplitudes to get a better model.

Patterson maps can be used to find.... the proper orientation (rotation).... the proper position (translation) for the search model. The density mapThe Patterson map

The Patterson map is the Fourier transform of the intensities. It can be calculated without the phases.

The matching procedure requires a search in up to six dimensions Luckily, the problem can be factorized into first, a rotation search then, a translation search

Flow chart of a typical molecular replacement procedure (AMORE) xyzin1 (*1.pdb) table1 (*1.tab) hklpck1 (*1.hkl) clmn1 (*1.clmn) tabfun rotfun (generate) rotfun (clmn) hklin (*.mtz) hklpck0 (*0.hkl) clmn0 (*0.clmn) rotfun (clmn) sortfun rotfun (cross) } SOLUTRC trafun (CB) SOLUTTF fitfun (rigid) SOLUTF pdbset solution.pdb

Poor phases yield self-fulfilling prophesies Amplitudes: Karlé Phases: Karlé Amplitudes: Hauptmann Phases: Hauptmann Amplitudes: Hauptmann If Karlé phases Hauptmann, Hauptmann is Karléd! Phases: Karlé

Heavy atom methods ?

Can we do X-ray holography?

Can we do holography with crystals? In principle yes, but the limited coherence length requires a local reference scatterer.

For a particular h,k,l FPFP F H1 F H2 F PH1 we can collect all knowledge about amplitudes and phases in a diagram (the so-called Harker diagram)

Normally, there´s the problem that different crystals are not strictly isomorphous. Thus, the best is a reference scatterer that can be switched on and off.

Absorption is accompanied by dispersion. This Kramers-Kronig equation is very general: Its (almost) only assumption is the existance of a universal maximum speed (c) for signal propagation.

Which elements are useful for MAD data collection? 7 keV 25 keV 0.5 Å 1.8 Å K LIII

H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Ha Lanthanides Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Actinides Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr The MAD periodic table

All phasing can be done on one crystal. F 1,2 F -1,-2 a b F 1,2 : scattering from b is phase  behind F -1,-2 : scattering from b is phase  ahead In the presence of absorption, Bijvoet pairs are nonequal.

assuming with absorption:

Direct methods ? Atomic resolution data the best approach for small molecules

If atoms can be treated as point-scatterers, then if all involved structure factors are strong

100 atoms in the unit cell a small protein The method is blunt for lower resolution or too many atoms.

Three-beam phasing ? very low mosaicity data an exciting, but not yet practical way

An example from our work (solved by a combination of MAD and MR) Metal ions

Can we tell from the fluorescence scans? Normally yes, but not in this case! Co Zn Fe Ni Cu Compton

Can we tell from the anomalous signal? order in the periodic table: Fe, Co, Ni, Cu, Zn

2fo-fc map, 1.05 Å anomalous map, 1.05 Å anomalous map, 1.54 Å Here´s the maps! Quantitatively: f“ (1.05 Å) = 1.85  0.05 f“ (1.54 Å) = 2.4  0.2

Thanks to my group, particularly S. Odintsov and I. Sabała Thanks to Gleb Bourenkov, MPI Hamburg c/o DESY