The E166 Experiment K. Peter Schüler e+ source options for the ILC undulator source scheme for ILC E166 – proof-of-principle demonstration of the undulator.

Slides:



Advertisements
Similar presentations
Journées Instrumentation du GDR Nucléon 8-9 Avril 2008, CEA Saclay Polarized Positrons at the Jefferson Laboratory (i) Physics motivations (ii) Principe.
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Testbeam results of the CMS electromagnetic calorimeter Alessio Ghezzi.
E166 Collaboration Meeting Princeton, May 2006 e+ Analyzing Power K. Peter Schüler e+ Analyzing Power: what we know from old G EANT 3 simulations.
POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.
Günther Rosner EUROHORC/NuPECC, Paris, 29/11/04 1 Hadron Structure & Spectroscopy Experimental frontiers: High precision High intensity Theoretical symbiosis:
GEn_stat_12-05 Hall A Collaboration Meeting December 5-6, 2005 Status Report: G En G. Cates, K. McCormick, B. Reitz, and B. Wojtsekhowski; spokespersons.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Photon Collimation For The ILC Positron Target Lei Zang The University of Liverpool Cockcroft Institute 24 th March 2007.
Geant 4 simulation of the DEPFET beam test Daniel Scheirich, Peter Kodyš, Zdeněk Doležal, Pavel Řezníček Faculty of Mathematics and Physics Charles University,
1 Challenge the future 1 1 Structural control method research for MAV application Yao Lu Chairman : Prof. Dr. Fred van Keulen Supervisor: Dr. Hans Goosen,
ABC Technology Project
“Start-to-End” Simulations Imaging of Single Molecules at the European XFEL Igor Zagorodnov S2E Meeting DESY 10. February 2014.
Squares and Square Root WALK. Solve each problem REVIEW:
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
25 seconds left…...
Week 1.
We will resume in: 25 Minutes.
A SMALL TRUTH TO MAKE LIFE 100%
1 PART 1 ILLUSTRATION OF DOCUMENTS  Brief introduction to the documents contained in the envelope  Detailed clarification of the documents content.
Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012 CLASSE Cornell University CHESS & ERL 1 Cornell Laboratory for Accelerator-based ScienceS.
| Institut für Kernphysik | Project C2 | Inna Pysmenetska | 1 Precision Measurement of the Proton Charge Radius with Elastic Electron Scattering*
Simulations with ‘Realistic’ Photon Spectra Mike Jenkins Lancaster University and The Cockcroft Institute.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
K.T. McDonald DoE Review Aug. 10, E-166 Experiment E-166 is a demonstration of undulator-based polarized positron production for linear colliders.
5 th Rencontres du Vietnam - Aug. 7, 2004 Polarized Positrons…E166 A.W.Weidemann 1 Introduction (What, who) Motivation (Why) Experiment and Polarimetry.
E166 Collaboration J.C. Sheppard SLAC, October, 2003 E166 Background Test Simulations: Overview-what do we need J. C. Sheppard.
E166 “Polarized Positrons for Future Linear Colliders” John C. Sheppard E166 Co-spokesman SLAC: August 31, 2004.
K.T. McDonald DoE Review July 29, E-166 Experiment E-166 is a demonstration of undulator-based polarized positron production for linear colliders.
E166 Collaboration Meeting Princeton, May 2006 Analyzer Magnetic Analysis K. Peter Schüler General Overview Spin and Magnetization Field Distribution.
Left: The polarization of the undulator radiation as a function of energy. Right: Calculated positron longitudinal polarization as a function of energy.
K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.
Undulator-Based Production of Polarized Positrons An experiment in the 50 GeV Beam in the SLAC FFTB E-166 Undulator-Based Production of Polarized Positrons.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) K.T. McDonald, J.C. Sheppard, Co-Spokespersons SLAC Experimental Program Advisory.
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Discussion for Keep Alive Source /Auxiliary Positron Source KURIKI Masao Hiroshima U. /KEK 10/25/2011 ILC Technical Baseline Review, 2011, DESY 1.
EUROTeV WP4 Report Polarised Positron Source Jim Clarke, on behalf of the WP4 team DESY Zeuthen STFC (Daresbury and RAL) University of Durham University.
1 Overview of Polarimetry Outline of Talk Polarized Physics Machine-Detector Interface Issues Upstream Polarimeter Downstream Polarimeter Ken Moffeit,
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) The International Polarized Positron Production Collaboration K.T. McDonald, J.C.
Polarimetry Report Sabine Riemann on behalf of the DESY/HUB group January 24, 2008 EUROTeV Annual Meeting, Frascati.
E166: Polarized Positrons & Polarimetry K. Peter Schüler ILC: - why polarized positrons - e+ source options - undulator source scheme E166 - proof-of-principle.
Update on ILC Production and Capturing Studies Wei Gai, Wanming Liu and Kwang-Je Kim ILC e+ Collaboration Meeting IHEP Beijing Jan 31 – Feb 2, 2007.
WG3a Sources Update Jim Clarke on behalf of WG3a GDE Meeting, Frascati, December 2005.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.
Dollan, Laihem, Lohse, Schälicke, Stahl 1 Monte Carlo based studies of polarized positrons source for the International Linear Collider (ILC)
CsI(Tl) Calorimeter and status of the E166 experiment E166 experiment CsI ( Tl) calorimeter construction. Test beam results vs. Geant4 simulation Schedules.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim ILC GDE Meeting DESY May 30 – Jun2, 2007 Work performed for.
Update on e+ Source Modeling and Simulation
A.P. Potylitsyn, I.S. Tropin Tomsk Polytechnic University,
Progress with Spin Tracking in GEANT4
ILC/CLIC e+ generation working group
Status Report on E-166 Undulator-Based Production of Polarized Positrons K.T. McDonald Princeton University EPAC Meeting SLAC, November 15, 2003.
E166 - LEPOL - Low Energy Positron Polarimetry for the ILC
ILC Baseline Design: Physics with Polarized Positrons
GEANT Simulations and Track Reconstruction
Presentation transcript:

The E166 Experiment K. Peter Schüler e+ source options for the ILC undulator source scheme for ILC E166 – proof-of-principle demonstration of the undulator method undulator basics transmission polarimetry results & conclusions The E166 Experiment: Undulator-Based Production of Polarized Positrons K. Peter Schüler (DESY) - on behalf of the E166 Collaboration PSTP 2007 at BNL Sep. 2007

The E166 Experiment K. Peter Schüler e+ source options for the ILC 2 existing/proposed positron sources: ILC 3 Concepts: large amount of charge reqd ! conventional laser Compton based (see M. Kurikis talk) undulator-based (this talk) PSTP 2007 at BNL Sep. 2007

The E166 Experiment K. Peter Schüler 3 conventional positron source (as used with SLC at SLAC) PRO: established technology (although not at reqd level) CON: pushing technical limits of target materials; reqs multiple targets and beamlines; very high activation levels no polarization option PSTP 2007 at BNL Sep thick W-Re target: strong multiple scattering, less efficient e+ capture

The E166 Experiment K. Peter Schüler undulator source scheme for ILC 4 PRO: photoprod. in thin target 0.4 X 0 Ti-alloy lower e+ beam emittance less energy deposition in target (1/5) and AMD (1/10) less neutron induced activation (1/16) polarized positrons CON: need high-energy electron drive beam (coupled e+/e- operation) long undulator ( m) reqd positron beam profile PSTP 2007 at BNL Sep. 2007

The E166 Experiment K. Peter Schüler undulator source scheme for ILC 5 PSTP 2007 at BNL Sep auxiliary keep-alive source

The E166 Experiment K. Peter Schüler E166 – proof of principle demonstration of the undulator method 6 PSTP 2007 at BNL Sep. 2007

7 The E166 Experiment K. Peter Schüler PSTP 2007 at BNL Sep. 2007

The E166 Experiment K. Peter Schüler undulator basics 8 PSTP 2007 at BNL Sep E166 ILC (RDR) electron beam energy (GeV) field (T) period (mm) K value photon energy 0 max (MeV) beam aperture (mm) active length (m) M (no. of periods)

The E166 Experiment K. Peter Schüler undulator basics 9 PSTP 2007 at BNL Sep E166 Photon SpectrumE166 Photon Polarization Spectrum:Angular Distribution:Polarization: first harmonic (dominating) expressions: E166 Photon Yield: = no. of photons per high-energy beam electron 0 max = 7.9 MeV

The E166 Experiment K. Peter Schüler The E166 Experiment 10 PSTP 2007 at BNL Sep /2005 setup and checkout Oct weeks of data taking

The E166 Experiment K. Peter Schüler E166 experimental setup 11 PSTP 2007 at BNL Sep GeV 4 – 8 MeV C1 – C4: photon collimation AG1, AG2: aerogel detectors AG1Si, AG2Si: silicon detectors GCAL: Si/W-calorimeter DM: electron beam dump magnets T1: g e+ prod. target (0.2 X 0 W) T2: e+ g reconv. target (0.5 X 0 W) PosSi: e+ flux monitor (Silicon) CsI: Cesium Iodide calorimeter SL: solenoid lens J: movable jaws < 8 MeV

The E166 Experiment K. Peter Schüler E166 photo gallery 12 PSTP 2007 at BNL Sep. 2007

The E166 Experiment K. Peter Schüler transmission polarimetry 13 1.Compton Transmission Polarimetry for Low-Energy Photons relies on spin dependence of Compton effect in magnetized iron: 2.Positron Polarimetry: (a) transfer e+ polarization to photon via brems/annihilation process (b) then infer e+ polarization from measured photon pol. as in method 1. PSTP 2007 at BNL Sep. 2007

14 analyzer magnets: overview active volume Photon Analyzer: 50 mm dia. x 150 mm long Positron Analyzer: 50 mm dia. x 75 mm long The E166 Experiment K. Peter Schüler P e 0.07 ΔP e /P e < 0.05 (aim of experiment) electron polarization of the iron: M = (B–B 0 )/ 0 magnetization n = electron density μ B = Bohr magneton g = magneto-mechanical factor PSTP 2007 at BNL Sep. 2007

15 spin and magnetization The E166 Experiment K. Peter Schüler g = magneto-mechanical factor: obtained from Einstein - de Haas type experiments, related to gyromagnetic ratio: γ = (g/2) (e/m) the principle … and its ultimate implementation (Scott 1962) g = ± for pure iron i.e. orbital effects contribute about 4% Note: g = 2 M s / M = 1 (pure spin magnetization) γ = e/m g = 1 M s / M = 0 (pure orbit magnetization) γ = ½ (e/m) PSTP 2007 at BNL Sep. 2007

16 analyzer magnets The E166 Experiment K. Peter Schüler CsI-Detector e+ Analyzer Pickup Coils e+ Analyzer Analyzer PSTP 2007 at BNL Sep. 2007

17 field distribution modeling (Vector Fields OPERA-2d) The E166 Experiment K. Peter Schüler R = 0 mm B z (T) Z (mm) longitudinal field distribution: B z (R,Z) field drops gradually towards the ends: L eff / L < 1 center end PSTP 2007 at BNL Sep

18 field distribution in 2d (Vector Fields OPERA-2d) The E166 Experiment K. Peter Schüler longitudinal field distribution: B z (R,Z) (shown for one quadrant) R (mm) Z (mm) PSTP 2007 at BNL Sep. 2007

19 flux measurements: The E166 Experiment K. Peter Schüler measure voltage transients in pickup coils upon current reversals Positron Analyzer ( amps) PSTP 2007 at BNL Sep voltage transient

20 flux and field measurements: results The E166 Experiment K. Peter Schüler Note: polarimetry was always done at full saturation over the central region (±60A) Z = 0 (center) PSTP 2007 at BNL Sep. 2007

21 electron polarization of the iron The E166 Experiment K. Peter Schüler PSTP 2007 at BNL Sep P e /P e ~ 2%

22 photon asymmetries The E166 Experiment K. Peter Schüler PSTP 2007 at BNL Sep detector asymmetry (%) (%) AG2Si (silicon) AG2 (aerogel) GCAL (Si/W-calo) AG2Si AG2 GCAL measured photon asymmetries are in reasonable agreement with simulation results ( %) based on the theoretical undulator polarization spectrum and detector response functions, but no detailed spectral shape analysis is possible.

The E166 Experiment K. Peter Schüler e+ analysis: energy deposition in CsI crystals 23 good signal/background separation in central crystal background comes from beam halo hitting the undulator undulator on/off measurements were taken on alternating machine pulses for effective background separation PSTP 2007 at BNL Sep undulator on: signal + background undulator off: background

The E166 Experiment K. Peter Schüler 24 central crystal asymmetry vs. run cycle number for e+ spectrometer setting at 140 A positron asymmetries PSTP 2007 at BNL Sep data samples and spectrometer settings

The E166 Experiment K. Peter Schüler positron asymmetries & beam polarizations 25 PSTP 2007 at BNL Sep e+ / e- results for the central CsI crystal = analyzing power from simulations = electron polarization of the iron

26 conclusions successful demonstration of the undulator method undulator functioned as predicted successful polarimetry of low-energy and e+ confirmed expected γ e+ spin-transfer mechanism measured high positron polarization with ~ 80% max. The E166 Experiment K. Peter Schüler PSTP 2007 at BNL Sep. 2007