What do these prefixes mean?. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic moleculesMacromolecules.

Slides:



Advertisements
Similar presentations
1 Macromolecules copyright cmassengale. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic.
Advertisements

1 Macromolecules copyright cmassengale. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic.
Macromolecules. Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. –This is different from organic foods in the.
Macromolecules copyright cmassengale1. Organic Compounds CompoundsCARBON organic Compounds that contain CARBON are called organic. Macromoleculesorganic.
2-3 CARBON COMPOUNDS TEKS: 9A: STRUCTURES AND FUNCTIONS OF DIFFERENT TYPES OF BIOMOLECUES.
Bellringer 11/14/12: 1.What would be the pH range for an acid? 2.What would be the pH range for a base? 3.If the solution has a lot of H+, what is it?
1 Macromolecules. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic moleculesMacromolecules.
1 Macromolecules. 2 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.
1 Macromolecules copyright cmassengale. 2 Homeostasis Keeping The Internal Environment Of The Cell or Organism Within The Ranges Required For Life Stable.
1 Macromolecules. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic moleculesMacromolecules.
1 Macromolecules. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic moleculesMacromolecules.
1 Macromolecules copyright cmassengale. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic.
1.  CompoundsCARBON organic  Compounds that contain CARBON are called organic.  Macromoleculesorganic molecules  Macromolecules are large organic.
1 Macromolecules copyright cmassengale. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic.
1 Macromolecules. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic moleculesMacromolecules.
1 BIOMOLECULES copyright cmassengale. Elements & Compounds All living things are made from chemical compounds. Those compounds are built using elements.
What do these words mean?. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic moleculesMacromolecules.
1 Macromolecules copyright cmassengale. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic.
1 Macromolecules copyright cmassengale. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic.
1 Macromolecules. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic moleculesMacromolecules.
1 Chemistry of Life. 2 Water About percent of an organism is water Water is used in most reactions in the body Water is called the universal solvent.
1 Macromolecules 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic.
1 Macromolecules copyright cmassengale. 2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic.
1 Macromolecules copyright cmassengale. 2 Organic Compounds CompoundsCARBON and HydrogenorganicCompounds that contain CARBON and Hydrogen are called organic.
Macromolecules. Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic moleculesMacromolecules.
1.  CompoundsCARBON organic  Compounds that contain CARBON are called organic.  Macromoleculesorganic molecules  Macromolecules are large organic.
MACROMOLECULES AKA ORGANIC MOLECULES copyright cmassengale1.
Biochemistry SOL BIO 3 b,c BIO 3 b, c OBJECTIVE: TSW investigate and understand the chemical and biochemical principles essential for life. Key concepts.
1 Macromolecules Please get out your macromolecule chart and a clean sheet of paper.
1 Macromolecules “The molecules of life”. Organic Chemistry All living things are mostly composed of 6 elements: C, H, N, O, P, S Compounds are broken.
1 Macromolecules copyright cmassengale. There are four classes of biological macromolecules: Carbohydrates, lipids, proteins, nucleic acids.
Mav Mark Farmers and gardeners are concerned about the pH of soil being too acidic for some plants and not acidic enough for others. Which pH below represents.
1 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic moleculesMacromolecules are large organic.
Macromolecules.
copyright cmassengale
Macromolecules “The molecules of life”
Macromolecules.
Organic Compounds Compounds that contain CARBON are called organic.
Warm up! Grab your composition book
copyright cmassengale
Macromolecules.
copyright cmassengale
Macromolecules Biochemical Compounds
Macromolecules.
copyright cmassengale
Macromolecules Mr. Nichols Coronado HS.
copyright cmassengale
copyright cmassengale
copyright cmassengale
Macromolecules Biochemical Compounds
Macromolecules.
Macromolecules SB1C. Identify the function of the four major macromolecules (carbohydrates, proteins, lipids, nucleic acids).
copyright cmassengale
Bio-Macromolecules.
Macromolecules.
copyright cmassengale
copyright cmassengale
copyright cmassengale
Macromolecules.
copyright cmassengale
copyright cmassengale
copyright cmassengale
Macromolecules.
copyright cmassengale
copyright cmassengale
copyright cmassengale
copyright cmassengale
copyright cmassengale
copyright cmassengale
copyright cmassengale
Presentation transcript:

What do these prefixes mean?

2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic moleculesMacromolecules are large organic molecules.

3 Carbon (C) Carbon4 electronsCarbon has 4 electrons in outer shell. Carboncovalent bonds 4Carbon can form covalent bonds with as many as 4 other atoms (elements). C, H, O or NUsually with C, H, O or N. –Example: CH 4 (Methane)

Next Word…..

Polygons Polygamy Polyester

What does “Mono” mean?

A Polymer Here are some analogies to better understand what polymers and monomers are…. EXAMPLE of POLYMER MONOMER A TRAIN? A NECKLACE? If the train is the whole polymer, what would be the small units that make up the train? If the necklace is the polymer, what are the monomers that make up the necklace?

A Polymer Here are some analogies to better understand what polymers and monomers are…. EXAMPLE of POLYMER MONOMER A TRAINTHE CARS A NECKLACEEACH PEARL If the train is the whole polymer, what would be the small groups that make up the train? If the necklace is the polymer, what are the monomers that make up the necklace?

Now you and a buddy need to think of at least 2 other analogies for a polymer and its monomers.

10 Question: How Are Macromolecules Formed?

11 Answer: Dehydration Synthesis “condensation reaction”Also called “condensation reaction” polymers monomers“removing water”Forms polymers by combining monomers by “removing water”. HOH HH H2OH2O copyright cmassengale

12 Question: How are Macromolecules separated or digested? copyright cmassengale

13 Answer: Hydrolysis monomers“adding water”Separates monomers by “adding water” HO HH H H2OH2O copyright cmassengale

Our 4 Macromolecules (a.k.a. biomolecules) Carbohydrates Proteins Lipids Nucleic Acids

LET’S BEGIN WITH CARBOHYDRATES They are the main source for the body to gain energy. They are our fuel! They make up the cell wall in plants which allow them to grow tall, without this carbohydrate, a plant would be a mushy mess! This type of carbohydrate is called Cellulose. THINK: CARBS= ENERGY and CELL WALLS

CARBOHYDRATES Each carbohydrate is made up of… THINK: “CHO”

CARBOHYDRATES THERE ARE 2 TYPES OF CARBOHYDRATES Simple Complex

Simple Sugars are carbohydrates made up of 1 or 2 monomers. They also taste sweet.

CARBOHYDRATES Carbohydrates are chains (polymers) made of monomers. The most common monomer of carbohydrates is…

The shape of Glucose is a hexagonal ring

21 Carbohydrates Monosaccharide: one sugar unit Examples:glucose ( Examples:glucose (C 6 H 12 O 6 )deoxyriboseriboseFructoseGalactose glucose copyright cmassengale

Simple Sugars

23 Carbohydrates Disaccharide: two sugar units Examples: –Sucrose (glucose+fructose) –Lactose (glucose+galactose) –Maltose (glucose+glucose) glucoseglucose

Complex Carbohydrates… What are they? Complex Cabohydrates are polymers made up of many monomers. Most also taste starchy.

25 Carbohydrates Polysaccharide: many sugar units Examples:starch (bread, potatoes) glycogen (beef muscle) cellulose (lettuce, corn) glucoseglucose glucoseglucose glucoseglucose glucoseglucose cellulose

Complex Carbohydrates

NOW ONTO PROTEINS They are the major structural molecules in living things for growth and repair : muscles, ligaments, tendons, bones, hair, skin, nails…IN FACT ALL CELL MEMBRANES have protein in them They make up antibodies in the immune system They make up enzymes for helping chemical reactions They makeup non-steriod hormones which THINK: Proteins= membranes, enzymes, antibodies, non- steriod hormones, structural molecules, “MEANS”

28 Proteins (Polypeptides) peptide bonds polypeptidesAmino acids (20 different kinds of aa) bonded together by peptide bonds (polypeptides). Six functions of proteins:Six functions of proteins: 1.Storage:albumin (egg white) 2.Transport: hemoglobin 3.Regulatory:hormones 4.Movement:muscles 5.Structural:membranes, hair, nails 6.Enzymes:cellular reactions

Microscope View of Skin and Nails This is skinThis is a nail

PROTEINS Proteins are made of long chains (polymers) made of monomers. All proteins are made of the monomer…

PROTEINS Each protein is made up of… THINK: “CHONS”

34 Proteins (Polypeptides) Four levels of protein structure: A.Primary Structure B.Secondary Structure C.Tertiary Structure D.Quaternary Structure copyright cmassengale

35 Primary Structure peptide bonds (straight chains) Amino acids bonded together by peptide bonds (straight chains) aa1aa2aa3aa4aa5aa6 Peptide Bonds Amino Acids (aa) copyright cmassengale

36 Secondary Structure primary structurecoilspleats hydrogen bonds3-dimensional folding arrangement of a primary structure into coils and pleats held together by hydrogen bonds. Two examples:Two examples: Alpha Helix Beta Pleated Sheet Hydrogen Bonds copyright cmassengale

37 Tertiary Structure Secondary structuresbentfolded more complex 3-D arrangementSecondary structures bent and folded into a more complex 3-D arrangement of linked polypeptides Bonds: H-bonds, ionic, disulfide bridges (S-S)Bonds: H-bonds, ionic, disulfide bridges (S-S) “subunit”.Call a “subunit”. Alpha Helix Beta Pleated Sheet copyright cmassengale

38 Quaternary Structure Composed of 2 or more “subunits” Globular in shape Form in Aqueous environments enzymes (hemoglobin)Example: enzymes (hemoglobin) subunits copyright cmassengale

LIPIDS ARE NEXT They are a great source of STORED ENERGY so we have it in the future. They INSULATE the body to maintain normal body temperature and they CUSHION the internal organs for protection. They produce hormones for the body called STERIODS They waterproof surfaces of animals,plants, and fruits- these are waxes! THINK: Waterproof, insulate, steriods, energy, cushion… “WISE C”

LIPIDS Each carbohydrate is made up of… THINK: “CHO”

OH NO CHO! Lipids like Carbs? You might have noticed that both carbohydrates and lipids have the elements Carbon, Hydrogen, and Oxygen. “CHO” A carbohydrate, has twice as many hydrogen atoms as the number of oxygen atoms. EX: C 6 H 12 O 6 (This is a carb= there are double the number of H compared to O) On the other hand, lipids have a lot more than twice the amount hydrogen atoms as the number of oxygen atoms. EX: C 27 H 46 O cholesterol

42Lipids not soluble in waterGeneral term for compounds which are not soluble in water. are soluble in hydrophobic solventsLipids are soluble in hydrophobic solvents. Remember:“stores the most energy”Remember: “stores the most energy” Examples:1. FatsExamples:1. Fats 2. Phospholipids 3. Oils 4. Waxes 5. Steroid hormones 6. Triglycerides

43 Lipids Six functions of lipids: 1.Long term energy storage 2.Protection against heat loss (insulation) 3.Protection against physical shock 4.Protection against water loss 5.Chemical messengers (hormones) 6.Major component of membranes (phospholipids)

LIPIDS Lipids are chains (polymers) made of monomers. The most common monomer of lipids is…

45 Lipids Triglycerides: c1 glycerol3 fatty acids Triglycerides: composed of 1 glycerol and 3 fatty acids.

The Shape of a triglyceride is like the letter E This is a triglyceride molecule

47 Fatty Acids fatty acids There are two kinds of fatty acids you may see these on food labels: 1.Saturated fatty acids: no double bonds (bad) 2.Unsaturated fatty acids: double bonds (good)

Saturated Fatty Acids have no double bonds and are saturated with hydrogen. Unsaturated Fatty Acids have double bonds.

LIPIDS…Some interesting info There are many different types of steroids. They are all lipids. Their functions vary. Some common steroids are: SEX STEROIDS ANABOLIC STERIODS CHOLESTEROL Like testosterone and estrogen They increase muscle

LIPIPS…Some interesting info Some anabolic steroids are illegal And can be dangerous and very unhealthy NATURAL STERIODS IN OUR BODY INCREASE MUSCLE GROWTH AND BONE DEVELOPMENT AND ARE GOOD. THE ILLEGAL ONES THAT ARE SYNTHETIC ARE BAD.

NUCLEIC ACIDS THERE ARE 2 TYPES OF NUCLEIC ACIDS DNA RNA

Nucleic Acids 1)DNA Is our genetic material. Chromosomes are made of DNA. Chromosomes contain the “recipes” to make proteins for your body. 2)RNA Reads the DNA “protein recipes” and makes the proteins for your body.

Nucleic Acids Each nucleic acid is made up of… THINK: “CHONP”

54 Nucleic acids Two types:Two types: a. Deoxyribonucleic acid (DNA- double helix) b. Ribonucleic acid (RNA-single strand) b. Ribonucleic acid (RNA-single strand) Nucleic acids nucleotides dehydration synthesisNucleic acids are composed of long chains of nucleotides linked by dehydration synthesis.

55 Nucleic acids Nucleotides include:Nucleotides include: phosphate group pentose sugar (5-carbon) nitrogenous bases: adenine (A) thymine (T) DNA only uracil (U) RNA only cytosine (C) Guanine (G) Guanine (G)

56 Nucleotide O O=P-O OPhosphate Group Group N Nitrogenous base (A, G, C, or T) (A, G, C, or T) CH2 O C1C1 C4C4 C3C3 C2C2 5 Sugar Sugar(deoxyribose)

57 DNA - double helix P P P O O O P P P O O O G C TA

The shape of a nucleic acid is: