NSTX The Resistive Wall Mode and Beta Limits in NSTX S. A. Sabbagh 1, J. Bialek 1, R. E. Bell 2, A. H. Glasser 3, B. LeBlanc 2, J.E. Menard 2, F. Paoletti.

Slides:



Advertisements
Similar presentations
November 3-5, 2003Feedback Workshop, Austin NORMAL MODE APPROACH TO MODELING OF FEEDBACK STABILIZATION OF THE RESISTIVE WALL MODE By M.S. Chu(GA), M.S.
Advertisements

Berkery – Kinetic Stabilization NSTX Jack Berkery Kinetic Effects on RWM Stabilization in NSTX: Initial Results Supported by Columbia U Comp-X General.
Halo Current and Resistive Wall Simulations of ITER H.R. Strauss 1, Linjin Zheng 2, M. Kotschenreuther 2, W.Park 3, S. Jardin 3, J. Breslau 3, A.Pletzer.
NSTX S. A. Sabbagh XP615: Active Stabilization of the Resistive Wall Mode at Low Aspect Ratio  Goals (Part I):  Operate new RWM feedback system on 0.9–1.0.
1 J-W. Ahn a H.S. Han b, H.S. Kim c, J.S. Ko b, J.H. Lee d, J.G. Bak b, C.S. Chang e, D.L. Hillis a, Y.M. Jeon b, J.G. Kwak b, J.H. Lee b, Y. S. Na c,
Lecture Series in Energetic Particle Physics of Fusion Plasmas
Fast Ion Driven Instabilities on NSTX E.D. Fredrickson, C.Z. Cheng, D. Darrow, G. Fu, N.N. Gorelenkov, G Kramer, S S Medley, J. Menard, L Roquemore, D.
MHD Behaviour of Low-Aspect-Ratio RFP Plasmas in RELAX S.Masamune, T.Onchi, A.Sanpei, R.Ikezoe, K.Oki, T.Yamashita, H.Shimazu, N.Nishino 1), R.Paccagnella.
Optimization of a Steady-State Tokamak-Based Power Plant Farrokh Najmabadi University of California, San Diego, La Jolla, CA IEA Workshop 59 “Shape and.
NSTX S. A. Sabbagh 1, M.G. Bell 2, R.E. Bell 2, L. L. Lao 3, B.P. LeBlanc 2, F.M. Levinton 4, J.E. Menard 2, C. Zhang 5 Reconstruction of NSTX Equilibria.
NSTX S. A. Sabbagh XP501: MHD spectroscopy of wall stabilized high  plasmas  Motivation  Resonant field amplification (RFA) observed in high  NSTX.
J. Menard, Z. Wang, Y. Liu (CCFE), J-K Park Theory and Simulation of Disruptions Workshop Princeton Plasma Physics Laboratory Princeton, New Jersey July.
JT-60U Resistive Wall Mode (RWM) Study on JT-60U Go Matsunaga 松永 剛 Japan Atomic Energy Agency, Naka, Japan JSPS-CAS Core University Program 2008 in ASIPP.
J A Snipes, 6 th ITPA MHD Topical Group Meeting, Tarragona, Spain 4 – 6 July 2005 TAE Damping Rates on Alcator C-Mod Compared with Nova-K J A Snipes *,
NSTX Status and Plans College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
NSTX XP830 review – J.W. Berkery J.W. Berkery, S.A. Sabbagh, H. Reimerdes Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL.
NSTX SAS – APS DPP ‘05 Supported by Office of Science S.A. Sabbagh 1, A.C. Sontag 1, W. Zhu 1, M.G. Bell 2, R. E. Bell 2, J. Bialek 1, D.A. Gates 2, A.
S.A. Sabbagh for NSTX Macrostability TSG Macrostability TSG Suggested FY-12 Milestones – Address key ReNeW issues for ST development 1) Assess sustained.
Initial Exploration of HHFW Current Drive on NSTX J. Hosea, M. Bell, S. Bernabei, S. Kaye, B. LeBlanc, J. Menard, M. Ono C.K. Phillips, A. Rosenberg, J.R.
SMK – ITPA1 Stanley M. Kaye Wayne Solomon PPPL, Princeton University ITPA Naka, Japan October 2007 Rotation & Momentum Confinement Studies in NSTX Supported.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
Non-axisymmetric Control Coil Upgrade and related ideas NSTX Supported by V1.0 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
1 B. C. Stratton, S. von Goeler, J. Robinson, and L. E. Zakharov Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA D. Stutman and K. Tritz.
PF1A upgrade physics review Presented by D. A. Gates With input from J.E. Menard and C.E. Kessel 10/27/04.
NSTX IAEA FEC 2006 PD: S.A. Sabbagh 1 Supported by Office of Science S.A. Sabbagh 1, R. E. Bell 2, J.E. Menard 2, D.A. Gates 2, A.C. Sontag 1, J.M. Bialek.
2 The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally Over a Wide Range of Tangency Angles Covers Thermal ( keV) and Energetic Ion.
1 NSTX-U/KSTAR 2013: Stability/rotation results for plasmas at/near n = 1 limit (S.A. Sabbagh, et al.)Oct. 21 st, 2013 High beta, MHD, and non-resonant.
Advances In High Harmonic Fast Wave Heating of NSTX H-mode Plasmas P. M. Ryan, J-W Ahn, G. Chen, D. L. Green, E. F. Jaeger, R. Maingi, J. B. Wilgen - Oak.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
Supported by Imaging the Pedestal Island Structure during the Application of 3D Magnetic Perturbations Office of Science D.J. Battaglia 1*, M.W. Shafer.
Workshop on MHD Control 2008 – O.Katsuro-Hopkins Computational analysis of advanced control methods applied to RWM control in tokamaks Oksana N. Katsuro-Hopkins.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
NSTX WZ – XP524 - NSTX Results Review ‘05 Supported by Office of Science Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT.
Edge characterization experiments in the National Spherical Torus Experiment V. A. Soukhanovskii and NSTX Research Team Session CO1 - NSTX ORAL session,
Progress on NSTX towards steady state at low aspect ratio D. A. Gates, Princeton Plasma Physics Laboratory on behalf of the NSTX Research Team Supported.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
EJD IAEA H-mode WS,, September 28, Overview Introduction — steady-state performance requirements -Global DIII-D and NSTX progress Plasma control.
Hiroshi Tojo, IAEA TM/ISTW2008, Frascati, Italy, October 2008 Features of High Frequency Mode during Internal Reconnection Events on MAST Graduate School.
MHD in the Spherical Tokamak MAST authors: SD Pinches, I Chapman, MP Gryaznevich, DF Howell, SE Sharapov, RJ Akers, LC Appel, RJ Buttery, NJ Conway, G.
Rajesh Maingi Oak Ridge National Laboratory M. Bell b, T. Biewer b, C.S. Chang g, R. Maqueda c, R. Bell b, C. Bush a, D. Gates b, S. Kaye b, H. Kugel b,
Exploration of High Harmonic Fast Wave Heating on NSTX J. R. Wilson 2002 APS Division of Plasma Physics Meeting November 11-15, 2002 Orlando, Florida.
1 Stability Studies Plans (FY11) E. Fredrickson, For the NCSX Team NCSX Research Forum Dec. 7, 2006 NCSX.
XP1020: Determination of Weak RWM Stability Rotation Profiles J.W. Berkery, S.A. Sabbagh, H. Reimerdes Department of Applied Physics, Columbia University,
The influence of non-resonant perturbation fields: Modelling results and Proposals for TEXTOR experiments S. Günter, V. Igochine, K. Lackner, Q. Yu IPP.
NSTX MHD Mode Control Mtg S.A. Sabbagh 1 RWM Stabilization and Control Research on NSTX S.A. Sabbagh 1, J.M. Bialek 1, R.E. Bell 2, D.A. Gates 2,
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
Comparison between X-ray measurements with the GEM detector and EFIT calculations Danilo Pacella Present address: JHU, Baltimore, MD Permanent address:
NSTX S. A. Sabbagh 1, J. Bialek 1, A. Sontag 1, W. Zhu 1, B. LeBlanc 2, R. E. Bell 2, A. H. Glasser 3, L. L. Lao 4, J.E. Menard 2, M. Bell 2, T. Biewer.
Simulations of NBI-driven Global Alfven Eigenmodes in NSTX E. V. Belova, N. N. Gorelenkov, C. Z. Cheng (PPPL) NSTX Results Forum, PPPL July 2006 Motivation:
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
MHD Issues and Control in FIRE C. Kessel Princeton Plasma Physics Laboratory Workshop on Active Control of MHD Stability Austin, TX 11/3-5/2003.
Influence of rapid rotation on high-  NSTX plasmas Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Non-linear MHD modelling of RMPs with toroidal rotation and resonant and non-resonant plasma braking. M.Becoulet G. Huysmans, E. Nardon Association Euratom-CEA,
SMK – APS ‘06 1 NSTX Addresses Transport & Turbulence Issues Critical to Both Basic Toroidal Confinement and Future Devices NSTX offers a novel view into.
NSTX Sabbagh/Shaing S. A. Sabbagh 1, K.C. Shaing 2, et al. XP743: Island-induced neoclassical toroidal viscosity and dependence on i Supported by Columbia.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
Helically Symmetry Configuration Evidence for Alfvénic Fluctuations in Quasi-Helically Symmetric HSX Plasmas C. Deng and D.L. Brower, University of California,
Global Mode Stability and Active Control in NSTX S.A. Sabbagh 1, J.W. Berkery 1, R.E. Bell 2, J.M. Bialek 1, S. Gerhardt 2, R. Betti 3, D.A. Gates 2, B.
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
Energetic Particles Interaction with the Non-resonant Internal Kink in Spherical Tokamaks Feng Wang*, G.Y. Fu**, J.A. Breslau**, E.D. Fredrickson**, J.Y.
NSTX SAS – GMS Mtg. 12/1/04 S. A. Sabbagh and J. E. Menard NSTX RWM Active Feedback System Implementation Plan Discussion NSTX Global Mode Stabilization.
NSTX S. A. Sabbagh XP452: RWM physics with initial global mode stabilization coil operation  Goals  Alter toroidal rotation / examine critical rotation.
NSTX XP802 review - S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, S. Gerhardt 2, J.E. Menard 2, J.W. Berkery 1, J.M. Bialek 1, D.A. Gates 2, B. LeBlanc 2,
GO : Progress toward fully non-inductive operation in NSTX Jonathan Menard, PPPL For the NSTX Team 47 th Annual Meeting of the DPP Monday–Friday,
NSTX S. A. Sabbagh XP407: Passive Stabilization Physics of the RWM in High  N ST Plasmas – 4/13/04  Goals  Define RWM stability boundary in (V , 
NSTX XP1062 (NTV) team review: 9/16/10 - S.A. Sabbagh, et al. S.A. Sabbagh, R.E. Bell, J.W. Berkery, S.P. Gerhardt, J-K Park, et al. XP1062: NTV behavior.
NSTX S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, J.E. Menard 2, D.A. Gates 2, J.M. Bialek 1, B. LeBlanc 2, F. Levinton 3, K. Tritz 4, H. Yu 3 XP728: RWM.
Influence of energetic ions on neoclassical tearing modes
Stabilization of m/n=1/1 fishbone by ECRH
Presentation transcript:

NSTX The Resistive Wall Mode and Beta Limits in NSTX S. A. Sabbagh 1, J. Bialek 1, R. E. Bell 2, A. H. Glasser 3, B. LeBlanc 2, J.E. Menard 2, F. Paoletti 1, M. Bell 2, T. Biewer 2, R. Fitzpatrick 4, E. Fredrickson 2, A. M. Garofalo 1, D.A. Gates 2, S. M. Kaye 2, L. L. Lao 5, R. Maingi 6, D. Mueller 2, G. A. Navratil 1, M. Ono 2, Y.-K. M. Peng 6, D. Stutman 7, W. Zhu 1, and the NSTX Research Team 1 Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA 2 Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA 3 Los Alamos National Laboratory, Los Alamos, NM, USA 4 University of Texas at Austin, Austin, TX, USA 5 General Atomics, San Diego, CA, USA 6 Oak Ridge National Laboratory, Oak Ridge, TN, USA 7 Johns Hopkins University, Baltimore, MD, USA 44th Annual Meeting of the APS Division of Plasma Physics Orlando, Florida - November 11th, 2002

NSTX NSTX is operating at sufficiently high beta to study passive wall stabilization Operation in wall-stabilized, high beta regime Resistive wall mode (RWM) and rotation damping Physical mechanisms for higher  N and longer pulse

NSTX NSTX is equipped to study passive stabilization Machine Aspect ratio≥ 1.27 Elongation≤ 2.5 Triangularity≤ 0.8 Plasma Current≤ 1.5 MA Toroidal Field≤ 0.6 T NBI≤ 7 MW Stabilizing plates Analysis EFIT – equilibrium reconstruction DCON – ideal MHD stability (control room analysis) VALEN – RWM growth rate

NSTX Plasma operation now in wall-stabilized space EFIT 2001 Data  N = 6 i Wall stabilized Nominal “no-wall limit” 2002 Data EFIT 4 l i 6 l i 8 l i 10 l i Normalized beta,  N = 6.5, with  N /l i = 9.5;  N up to 35% over  N no-wall Toroidal beta has reached 35% (  t = 2  0 / B 0 2 ) Design target

NSTX Maximum  N strongly depends on pressure peaking F p = p(0) / P profile from EFIT using P e, diamagnetic loop, magnetics Time-dependent calculations required to evaluate stability limits and mode structure

NSTX Operational improvements yield higher, sustained  N n=1 error field reduced by an order of magnitude in 2002 H-mode pressure profile broadening raises  N limit q min > 1 maintained (EFIT q min without MSE) 2001 (High error field)2002 (Reduced error field) t(s) RWM H-mode q min FpFp NN  B r n=1 (G) n = 1 no-wall unstable (DCON) n = 1 unstable (with-wall) (no-wall) n = 1 unstable Locked mode detector 3.5  wall (VALEN)

NSTX Rotation damping rate larger when  N >  N no-wall Rotation damping rate is ~ 6 times larger when  N >  N no-wall Toroidal Rotation F  (kHz) NN  B r n=1 (G) t(s) Locked mode detector F  (q = 2) F  (R = 1.35m) n = 1 no-wall unstable RWMNo RWM n = 1,2 rotating modes F  (q = 2) F  (R = 1.35m) 3.5  wall (VALEN) n = 1 rotating mode

NSTX Two stages of rotation damping during RWM Initial stage: Global, non-resonant rotation damping Final stage: Local rotation damping at resonant surfaces appears as rotation slows Analogous to rotation dynamics in induced error field experiments  E. Lazzaro, et al., Physics of Plasmas 9 (2002) (JET)

NSTX Rotation damping during RWM is rapid and global Field ripple damping by neoclassical toroidal viscosity ~  B r 2 T i 0.5 candidate for observed damping profile during RWM R (m)  F  (kHz) F  (kHz) 0.43 s s 0.29 s 0.31 s 0.33 s 0.35 s 0.37 s 0.39 s n = 1, 2 rotating modes  F  (kHz) F  (kHz) s 0.31 s 0.33 s 0.31 s 0.33 s RWM R (m) 0.41 s 0.45 s 0.43 s 0.27 s 0.29 s 0.31 s 0.33 s 0.35 s 0.37 s 0.39 s 0.41 s 0.45 s

NSTX Core rotation damping decreases with increasing q Largest rotation damping (dF  /dt = -600 kHz/s) at B t < 0.4T, q min < 2  Factor of 8 times larger than damping from n=2 island alone When q min ~ 2 damping rate is reduced and F  is maintained longer Consistent with theory linking rotation damping to low order rational surfaces q min q min EFIT q min without MSE I p = 0.8 MA

NSTX Plasma stabilized above no-wall  N limit for 18  wall I p = 0.8 MA DCON n = 1 with-wall n = 1 no-wall VALEN mode growth time = 15 ms VALEN mode growth time = 0.03 – 0.05 ms Plasma approaches with-wall  N limit  VALEN growth rate becoming Alfvénic F  (0) increases as  N >>  N no-wall Passive stabilizer loses effectiveness at maximum  N  Neutrons collapse with  N - suggests internal mode TRANSP indicates higher F p  Computed  N limits conservative 30 kHz F  (0) 5MW NBI  N > no-wall limit q min > 2

NSTX Research on passive stabilization and high  N rotation damping physics has begun Passive stabilization above ideal no-wall  N limit by up to 35%  Improvement in plasmas with highest  N up to 6.5;  N /l i = 9.5 The  N limit increases with decreasing pressure profile peaking Rotation damping at  N >  N no-wall has two stages  Global, non-resonant damping  Local, resonant field damping during final stage Rotation damping rate substantially decreases as q increases Passive stabilization becomes less effective at highest  N Active feedback design shows sustained  N /  N wall = 94% possible  See Bialek, et al., GP1.107 Tuesday For more RWM detail, see NSTX poster session (Tuesday)

NSTX Other presentations on NSTX beta limits, RWM, and mode stabilization High toroidal beta plasmas Gates, et al., BI1.001 Monday High poloidal beta plasmas Menard, et al., CO1.002 Monday Resistive wall modes Zhu, et al., GP1.106 Tuesday (Sabbagh for) Paoletti, et al., GP1.105 Tuesday RWM active feedback design Bialek, et al., GP1.107 Tuesday Presentation Subject

NSTX Active stabilization might sustain 94% of with-wall  limit System with ex-vessel control coils can reach 72% of  N wall System with control coils among passive plates can only reach 50% of  N wall VALEN model of NSTX (cutaway view) Growth rate (s -1 ) NN Passive With-wall limit (  N wall) Modeled active feedback coils In-vessel control coils Active gain (V/G) Bialek, et al., GP1.107 Tuesday

NSTX T e perturbation measured during RWM No low frequency (< 80 kHz) rotating modes observed during measured  T e  T e displacement precedes n=2 rotating mode t = s t = s T e (keV) R (m) Thomson scattering (LeBlanc) Frequency (kHz) t(s) 1234 mode number t = st = 0.31 s NN t(s)  B r n=1 (G) Locked mode detector  N > no wall limit

NSTX  N limit now insensitive to plasma proximity to wall At high  N ~ 5, external modes are well-coupled to passive stabilizing plates, independent of gap  Confirmed by ideal MHD stability calculations Higher error field (2001 data) may have also lowered  limit for smaller outer gap See W. Zhu, et al., GP1.106 Tuesday 2002 data (H-mode) 2001 data (L-mode)

NSTX Rotation damping strongest where mode amplitude largest Field ripple damping by neoclassical parallel viscosity ~  B r 2 T i 0.5 possible candidate for observed damping profile NN axisedge Mode decomposition Toroidal rotation evolution axisedge t = 0.15 s t = 0.17 s t = 0.19 s  (arb) t = s R (cm) F  (kHz)

NSTX Mode intensifies in divertor region at highest  N  N = 5.1 VALEN / DCON computed n = 1 external mode currents  N = 7.1 Increased  p drive more significant in producing higher growth rate