3 – 3.5  MIR CRDS 1 – 1.5  NIR CRDS 432 1  m -HV O2O2 N2N2 OH X a A B X X ~

Slides:



Advertisements
Similar presentations
Cavity ring down spectroscopy on C 6 H 5 radical in a pulsed supersonic jet expansion discharge Keith Freel Dr. Michael Heaven Dr. M.C. Lin Dr. Joonbum.
Advertisements

OBSERVATION OF THE A-X ELECTRONIC TRANSITION OF C 6 -C 10 PEROXY RADICALS Neal D. Kline and Terry A. Miller Laser Spectroscopy Facility The Ohio State.
F EMTO -FANTASIO: A VERSATILE EXPERIMENTAL SET - UP TO INVESTIGATE MOLECULAR COMPLEXES K. D IDRICHE, C. L AUZIN, X. DE G HELLINCK, T. F ÖLDES, AND M. H.
Gabriel M. P. Just, Patrick Rupper, Dmitry G. Melnik and Terry A. Miller EXPERIMENTAL PROGRESS FOR HIGH RESOLUTION CAVITY RINGDOWN SPECTROSCOPY OF JET-
Gabriel M. P. Just, Patrick Rupper, Dmitry G. Melnik and Terry A
Intracavity Laser Absorption Spectroscopy of PtS in the Near Infrared James J. O'Brien University of Missouri – St. Louis and Leah C. O'Brien and Kimberly.
23 June Performance of a Continuous Supersonic Expansion Discharge Source Evaluated by Laser-Induced Fluorescence Spectroscopy.
DEVELOPMENT OF BROAD RANGE SCAN CAPABILITIES WITH JET COOLED CAVITY RINGDOWN SPECTROSCOPY Terrance Codd, Ming-Wei Chen, Terry A. Miller The Ohio State.
Terrance J. Codd*, John Stanton†, and Terry A. Miller* * The Laser Spectroscopy Facility, Department of Chemistry and Biochemistry The Ohio State University,
MODERATE RESOLUTION JET COOLED CAVITY RINGDOWN SPECTROSCOPY OF THE A STATE OF NO 3 RADICAL Terrance J. Codd, Ming-Wei Chen, Mourad Roudjane and Terry A.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Kyle Crabtree, Carrie Kauffman, Benjamin J. McCall University of Illinois at Urbana-Champaign.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
Renner-Teller and Spin-Orbit Coupling in H 2 S + and AsH 2 G. Duxbury 1, Christian Jungen 2 and Alex Alijah 3 1 Department of Physics, University of Strathclyde,
RABI CHHANTYAL PUN, PHILLIP THOMAS, DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120.
Mikael Siltanen,1 Markus Metsälä,1
ROTATIONALLY RESOLVED A 2 A 1 - X 2 E ELECTRONIC SPECTRA OF SYMMETRIC METHOXY RADICALS: CH 3 O AND CD 3 O (RI08) Laser Spectroscopy Facility Department.
O. Pirali, S. Gruet, M. Vervloet AILES beamline, synchrotron SOLEIL
ROTATIONALLY RESOLVED ELECTRONIC SPECTRA OF SECONDARY ALKOXY RADICALS 06/22/10 JINJUN LIU AND TERRY A. MILLER Laser Spectroscopy Facility Department of.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
High-Resolution Spectroscopy of the ν 8 Band of Methylene Bromide Using a Quantum Cascade Laser-Based Cavity Ringdown Spectrometer Jacob T. Stewart and.
Investigation on Reverse Water-gas Shift over La 2 NiO 4 Catalyst by cw-Cavity Enhanced Absorption Spectroscopy during CH 4 /CO 2 Reforming B.S. Liu, Ling.
The Structure and Spectra of Organic Peroxy Radicals Erin N. Sharp, Patrick Rupper, Terry A. Miller The Laser Spectroscopy Facility Department of Chemistry.
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
MOTIVATIONS : Atmospheric Chemistry Troposphere Chemistry – Ozone Production RO 2 + NO → RO + NO 2 NO 2 → NO + O( 3 P) O( 3 P) + O 2 + M → O 3 + M.
Cavity Ringdown Spectroscopy of the A 2 A 2 - B 2 B 2 Vibronically Mixed Excited States of the Benzyl Radical and the 1 2 A 2 ← X 2 B 1 Transition of the.
Cavity Ringdown Spectroscopy and Kinetics of n-Butoxy Isomerization: Detection of the A-X Band of HOC 4 H 8 OO Matthew K. Sprague 1, Mitchio Okumura 1,
Jet cooled Laser Induced Fluorescence Spectroscopy of FCH 2 CH 2 O and other photo-fragments of XCH 2 CH 2 ONO (X=F,Cl,Br,OH) Rabi Chhantyal-Pun, Ming-Wei.
Haifeng Huang and Kevin K. Lehmann
Beam Action Spectroscopy via Inelastic Scattering BASIS Technique Bobby H. Layne and Liam M. Duffy Department of Chemistry & Biochemistry, the University.
1 Intracavity Laser Absorption Spectroscopy of Nickel Fluoride in the Near-Infrared James J. O'Brien Department of Chemistry & Biochemistry University.
High-Resolution Visible Spectroscopy of H 3 + Christopher P. Morong, Christopher F. Neese and Takeshi Oka Department of Chemistry, Department of Astronomy.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
High Precision, Sensitive, Near-IR Spectroscopy in a Fast Ion Beam Michael Porambo, Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Benjamin.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
HIGH RESOLUTION JET COOLED CAVITY RINGDOWN SPECTROSCOPY OF THE A STATE BAND OF THE NO 3 RADICAL Terrance J. Codd, Mourad Roudjane and Terry A. Miller.
Long Term Stability in CW Cavity Ring-Down Experiments
High resolution cavity ringdown spectroscopy of jet-cooled deuterated methyl peroxy (CD 3 O 2 ) in the near IR Shenghai Wu, Patrick Rupper, Patrick Dupré.
D. Zhao, K. Doney, J. Guss, A. Walsh, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands (Presented.
LASER-INDUCED FLUORESCENCE (LIF) SPECTROSCOPY
The A ← X ABSORPTION SPECTRUM OF 2-NITROOXYBUTYL PEROXY RADICAL
FIRST HIGH RESOLUTION INFRARED SPECTROSCOPY OF GAS PHASE CYCLOPENTYL RADICAL: STRUCTURAL AND DYNAMICAL INSIGHTS FROM THE LONE CH STRETCH Melanie A. Roberts,
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
JET-COOLED A-X SPECTRA OF THE β- HYDROXYETHYLPEROXY RADICAL AND ITS ISOTOPOLOGUES Laser Spectroscopy Facility Department of Chemistry The Ohio State University.
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
Neal Kline, Meng Huang, and Terry A. Miller Department of Chemistry and Biochemistry The Ohio State University.
DISPERSED FLUORESCENCE (DF) SPECTROSCOPY OF JET-COOLED METHYLCYCLOHEXOXY (MCHO) RADICALS Jahangir Alam, Md Asmaul Reza, Amy Mason, Neil Reilly and Jinjun.
Structure in the Visible Absorption Bands of Jet-Cooled Phenyl Peroxy Radicals Michael N. Sullivan *, Keith Freel, J. Park, M.C. Lin, and Michael C. Heaven.
Numerical and experimental study of the mode tuning technique effects. Application to the cavity ring-down spectroscopy. J. Remy, G.M.W. Kroesen, W.W.
The Influence of Free-Running FP- QCL Frequency Jitter on Cavity Ringdown Spectroscopy of C 60 Brian E. Brumfield* Jacob T. Stewart* Matt D. Escarra**
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Time-resolved Fourier transform infrared emission spectra of HNC/HCN K. Kawaguchi & A. Fujimoto Okayama University.
JET-COOLED CAVITY RING-DOWN SPECTROSCOPY OF THE A 2 E ″ – X 2 A 2 ′ VIBRONIC TRANSITION OF NO 3 Laser Spectroscopy Facility Department of Chemistry The.
60th International Symposium on Molecular Spectroscopy
70th International Symposium on the Molecular Spectroscopy June 22-26, 2015 The Laser Spectroscopy Facility Department of Chemistry and Biochemistry Mourad.
Sub-Doppler Jet-Cooled Infrared Spectroscopy of ND 2 H 2 + and ND 3 H + in NH Stretch Fundamental Modes Astronomical Molecular Spectroscopy in the Age.
Rotational Spectroscopy of OCS in Superfluid Helium Nanodroplets Paul Raston, Rudolf Lehnig, and Wolfgang Jäger Department of Chemistry, University of.
Md Asmaul Reza, Jahangir Alam, Amy Mason, Neil Reilly and Jinjun Liu Department of Chemistry, University of Louisville JET-COOLED DISPERSED FLUORESCENCE.
Development of a Fast Ion Beam Spectrometer for Molecular Ion Spectroscopy Departments of Chemistry and Astronomy University of Illinois at Urbana-Champaign.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
SCRIBES Sensitive Cooled Resolved Ion BEam Spectroscopy
~ ~ DETERMINATION OF THE TRANSITION DIPOLE MOMENT OF THE A - X
The Performance Of A Continuous Supersonic Expansion Discharge Source
The Performance Of A Continuous Supersonic Expansion Discharge Source
The Near-IR Spectrum of CH3D
N2 Vibrational Temperature, Gas Temperature,
Jinjun Liu, Ming-Wei Chen, John T. Yi,
JILA F. Dong1, M. A. Roberts, R. S. Walters and D. J. Nesbitt
FLUORESCENCE-DEPLETION INFRARED SPECTROSCOPY
Presentation transcript:

3 – 3.5  MIR CRDS 1 – 1.5  NIR CRDS  m -HV O2O2 N2N2 OH X a A B X X ~

SRS configuration Ti:Sa ring cw laser Ti:Sa Amplifier Nd:YAG pulse laser Raman Cell PD InGaAs or InSb Detector Ring-down cavity with slit-jet (absorption length ℓ = 5 cm) L = 67 cm Vacuum Pump 1 m single pass SRS 750 ~ 900 nm 40 ~ 100 mJ  ~ 40 MHz ℓ Nd:YAG cw laser 1 st Stokes, ~ 1.3  m, ~ 2 mJ 2 nd Stokes, ~ 3  m, ~ 200  J  SRS : 180 – 220 MHz Experimental Apparatus R ~ 1.3  m ~ 3  m

Ti:Sa ring cw laser Ti:Sa Amplifier Nd:YAG pulse laser Raman Cell PD InGaAs or InSb Detector Ring-down cavity with slit-jet (absorption length ℓ = 5 cm) L = 67 cm Vacuum Pump 1 m single pass SRS 750 ~ 900 nm 40 ~ 100 mJ  ~ 40 MHz ℓ Nd:YAG cw laser 1 st Stokes, ~ 1.3  m, ~ 2 mJ 2 nd Stokes, ~ 3  m, ~ 200  J  SRS : 180 – 220 MHz Experimental Apparatus S. Wu, P. Dupre and T. A. Miller, Phys. Chem. Chem. Phys. 8 (2006) 1682 SRS configuration R ~ 1.3  m ~ 3  m ~ 200 NIR  Doppler ( slit jet ) ~ 100 MIR D. Anderson, S. Davis, T. Zwier and D. Nesbitt, Chem. Phys. Lett. 258 (1996)207 ~ 200 NIR  Doppler ( slit jet ) ~ 100 MIR D. Anderson, S. Davis, T. Zwier and D. Nesbitt, Chem. Phys. Lett. 258 (1996)207

Ti:Sa ring cw laser Ti:Sa Amplifier Nd:YAG pulse laser Raman Cell PD InSb Detector Ring-down cavity with slit-jet (absorption length ℓ = 5 cm) L = 67 cm Vacuum Pump 1 m single pass SRS 750 ~ 900 nm 40 ~ 100 mJ  ~ 40 MHz ℓ Nd:YAG cw laser DFM configuration Experimental Apparatus DFM unit Nd:YAG pulse laser 1064 nm (9398 cm -1 ), ~ 150 mJ ~ 3.3  m, 600  J,  DFM : < 70 MHz  Doppler ( slit jet ) ~ 100 MIR D. Anderson, S. Davis, T. Zwier and D. Nesbitt, Chem. Phys. Lett. 258 (1996)207  Doppler ( slit jet ) ~ 100 MIR D. Anderson, S. Davis, T. Zwier and D. Nesbitt, Chem. Phys. Lett. 258 (1996)207

The Comparison of CH 3 Spectra ( 3 band ) P Q 1 (2) P Q 1 (1) R R 0 (0) P Q 2 (2) R R 1 (1) P R 1 (1) Wavenumber (cm -1 ) Absorbance per pass (ppm) using SRS using DFM 0.05 cm MHz 150 MHz 240 MHz 105 MHz Spectrum assignment according to: T. Amano, P. F. Bernath, C. Yamada, Y. Endo and E. Hirota, J. Chem. Phys. 77 (1982) 5284 S. Davis, D. T. Anderson, G. Duxbury and D. J. Nesbitt, J. Chem. Phys. 107 (1997) 5661  K  N K” (N”)

Non-exponential Decay  laser > =  Doppler  The beginning of the decay reflects the medium absorption  The end of the decay reflects the empty cavity absorption The non-linear response of the absorption medium  The absorption is saturated at the very beginning of the decay  The later part of the decay is approximated by the linear absorption The chemical or physical dynamics faster than    Multi-exponential decay  To analyze the decay as a function of time t (  s) Intracavity Energy (  J ) Empty cavity CH 3 [ R R 0 (0) ] absorption Empty cavity CH 3 [ R R 0 (0) ] absorption SRS radiation DFM radiation Decay cm -1  = 1.7  s (99.63%)  0 = 5.8  s (99.95%)  = 1.0  s (99.98%)  0 = 5.9  s (99.99%)

Spectra of Jet- Cooled CRDS (DFM version) P, Q and R branch of 3 band of methyl radical (CH 3 ) Absorbance per pass (ppm) R R 0 (0) R R 1 (1) R R 2 (2) R R 3 (3) P R 1 (1) P Q 1 (1) P P 1 (1) P P 2 (2) P P 3 (3) cm Wavenumber (cm -1 ) E rot (cm -1 ) T = 19 (2) K I / Honl-London Fac. Wavenumber (cm -1 ) Absorbance per pass (ppm) R branch 1 (K=0) band of ethyl radical (C 2 H 5 ) I / Honl-London Fac. E rot (cm -1 ) T = 18 (2) K Spectrum assignment according to: S. Davis, D. Uy and D. J. Nesbitt, J. Chem. Phys. 112 (2000) 1823  K  N K” (N”)

Discharge Expansions - HV Longitudinal DischargeTransverse Discharge R R 0 (0) 3 band CH 3 I CH 3 I Ne peak absorbance per pass ( 200 mA discharge ) 1800 ppm1700 ppm Max. stable discharge current 200 mA (1800 ppm) 400 mA (2000 ppm) Noise ( at max. discharge current ) 7 ppm5 ppm S/N ~ 400 S/N ~ 250

Discharge Expansions - HV Longitudinal DischargeTransverse Discharge CH 3 I CH 3 I Ne R R 0 (0) 3 band peak absorbance per pass ( 200 mA discharge ) 1800 ppm1700 ppm Max. stable discharge current 200 mA (1800 ppm) 400 mA (2000 ppm) Noise ( at max. discharge current ) 7 ppm5 ppm Downstream injectionNoYes O2O2 O2O2 O2O2 -HV S/N ~ 400 S/N ~ 250

Main Reactions Related to CH 3, O 2 and O O2O2 CH 3 I Ne

Reactions Products Wavenumber (cm -1 ) Number density (10 13 cm -3 ) CH C 2 H CH CH C 2 H CH 2 O 0.79 Without O 2 With O 2 10 mm 0.8 mm CH 3 OO 0.15 O2O2 A. Perrin, A. Valentin, L. Daumont, J. Mol. Struc. 780–781 (2006) 28 CH 3 I Ne

CH 3 I Downstream Injection Without O 2 With O 2 Number density (10 13 cm -3 ) CH ↓0.24 C 2 H ↑0.12 CH ↑0.005 CH ↑0.24 C 2 H ↑0.012 CH 2 O 0.0 ↓ mm 0.8 mm R R 0 (0) 3 band Absorbance (ppm) Wavenubmer (cm -1 ) time (s) Absorbance (ppm) N 2 or Ne injection O 2 injection 25% CH 3 OO 0.3 ↑0.15 O2O2 or N2N2 Ne O2O2

Candidate for Jet-cooled spectra of CH 3 OO at NIR Wavenumber (cm -1 ) Absorption per pass (ppm) Prediction at 20 K CH 3 I as precursor O 2 downstream inject. Scan #1 Scan #2 CH 3 COCH 3, as precursor O 2 downstream inject.

Conclusion & Further work NIR (1.0 – 1.5  m) & MIR (3.0 – 3.5  m) spectra region Near Doppler limited resolution (~200 NIR, <70 MIR) High sensitivity (0.7 x Hz NIR and 1.1 x Hz MIR) Transverse discharge with capability of downstream injection Candidate for jet-cooled spectra of CH 3 OO was found in NIR Rotational structure of CH 3 OO Other interesting radicals…

Acknowledgement  Dr. Terry A. Miller  Current group members: Patrick Rupper, Gabriel Just, Jinjun Liu, Erin Sharp, Ilias Sioutis and Becky Gregory.  Former group members: John Yi and Vadim Stakhursky &  Group in mechanical engineering: Dr. J. William Rich, Dr. Igor V. Adamovich, Yurii Utkin &  Colleagues in machine shop: Jerry Hoff, Larry Antal, Joshua Shannon  Colleagues in electronic shop: Dale Karweik, John Sullivan & NSF Funding

Discharge Expansions 1) 2) 3) 10 mm 5 mm

Wavenumber (cm -1 ) Ambient CRDS experiment of CH 3 OO JCP. 112 (2000) Simulation  Doppler = 0.2 cm -1 T = 293 K Simulated Jet-Cooled CRDS of CH 3 OO  = 0.01 cm -1 T = 20 K N obs ~ 1.5 x cm -3 l absorption ~ 16 cm CH 3 OO in the NIR … Absorbance per pass (ppm) S  band = 3.7 x cm / mol.