Technical University of Berlin Communication Systems Group Director: Prof. Thomas Sikora Carsten Clemens Error Concealment for.

Slides:



Advertisements
Similar presentations
Packet Video Error Concealment With Auto Regressive Model Yongbing Zhang, Xinguang Xiang, Debin Zhao, Siwe Ma, Student Member, IEEE, and Wen Gao, Fellow,
Advertisements

Real-Time Template Tracking
Active Appearance Models
DTAM: Dense Tracking and Mapping in Real-Time
Efficient High-Resolution Stereo Matching using Local Plane Sweeps Sudipta N. Sinha, Daniel Scharstein, Richard CVPR 2014 Yongho Shin.
11/11/02 IDR Workshop Dealing With Location Uncertainty in Images Hasan F. Ates Princeton University 11/11/02.
Spatial-Temporal Consistency in Video Disparity Estimation ICASSP 2011 Ramsin Khoshabeh, Stanley H. Chan, Truong Q. Nguyen.
MASKS © 2004 Invitation to 3D vision Lecture 7 Step-by-Step Model Buidling.
Real-Time Accurate Stereo Matching using Modified Two-Pass Aggregation and Winner- Take-All Guided Dynamic Programming Xuefeng Chang, Zhong Zhou, Yingjie.
Error detection and concealment for Multimedia Communications Senior Design Fall 06 and Spring 07.
A New Block Based Motion Estimation with True Region Motion Field Jozef Huska & Peter Kulla EUROCON 2007 The International Conference on “Computer as a.
Motion Tracking. Image Processing and Computer Vision: 82 Introduction Finding how objects have moved in an image sequence Movement in space Movement.
Video Coding with Linear Compensation (VCLC) Arif Mahmood, Zartash Afzal Uzmi, Sohaib A Khan Department of Computer.
Image Quilting for Texture Synthesis and Transfer Alexei A. Efros1,2 William T. Freeman2.
Contents Description of the big picture Theoretical background on this work The Algorithm Examples.
Direct Methods for Visual Scene Reconstruction Paper by Richard Szeliski & Sing Bing Kang Presented by Kristin Branson November 7, 2002.
Fitting. We’ve learned how to detect edges, corners, blobs. Now what? We would like to form a higher-level, more compact representation of the features.
Automatic Panoramic Image Stitching using Local Features Matthew Brown and David Lowe, University of British Columbia.
Geometric Optimization Problems in Computer Vision.
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
Virtual Control of Optical Axis of the 3DTV Camera for Reducing Visual Fatigue in Stereoscopic 3DTV Presenter: Yi Shi & Saul Rodriguez March 26, 2008.
Assignment 2 Compute F automatically from image pair (putative matches, 8-point, 7-point, iterative, RANSAC, guided matching) (due by Wednesday 19/03/03)
CSE473/573 – Stereo Correspondence
Motion from normal flow. Optical flow difficulties The aperture problemDepth discontinuities.
Face Recognition Using Neural Networks Presented By: Hadis Mohseni Leila Taghavi Atefeh Mirsafian.
EE392J Final Project, March 20, Multiple Camera Object Tracking Helmy Eltoukhy and Khaled Salama.
כמה מהתעשייה? מבנה הקורס השתנה Computer vision.
Computer vision: models, learning and inference
Yuping Lin and Gérard Medioni.  Introduction  Method  Register UAV streams to a global reference image ▪ Consecutive UAV image registration ▪ UAV to.
By Yevgeny Yusepovsky & Diana Tsamalashvili the supervisor: Arie Nakhmani 08/07/2010 1Control and Robotics Labaratory.
Multimodal Interaction Dr. Mike Spann
Lecture 12 Stereo Reconstruction II Lecture 12 Stereo Reconstruction II Mata kuliah: T Computer Vision Tahun: 2010.
1 Interest Operators Harris Corner Detector: the first and most basic interest operator Kadir Entropy Detector and its use in object recognition SIFT interest.
1 Robust estimation techniques in real-time robot vision Ezio Malis, Eric Marchand INRIA Sophia, projet ICARE INRIA Rennes, projet Lagadic.
A Local Adaptive Approach for Dense Stereo Matching in Architectural Scene Reconstruction C. Stentoumis 1, L. Grammatikopoulos 2, I. Kalisperakis 2, E.
CS 4487/6587 Algorithms for Image Analysis
Feature-Based Stereo Matching Using Graph Cuts Gorkem Saygili, Laurens van der Maaten, Emile A. Hendriks ASCI Conference 2011.
Ray Divergence-Based Bundle Adjustment Conditioning for Multi-View Stereo Mauricio Hess-Flores 1, Daniel Knoblauch 2, Mark A. Duchaineau 3, Kenneth I.
Technische Universität Berlin Communication Systems Group Director: Prof. Thomas Sikora Sebastian Knorr 21/08/2007 Super-Resolution.
December 9, 2014Computer Vision Lecture 23: Motion Analysis 1 Now we will talk about… Motion Analysis.
A Region Based Stereo Matching Algorithm Using Cooperative Optimization Zeng-Fu Wang, Zhi-Gang Zheng University of Science and Technology of China Computer.
Computer Vision Lecture #10 Hossam Abdelmunim 1 & Aly A. Farag 2 1 Computer & Systems Engineering Department, Ain Shams University, Cairo, Egypt 2 Electerical.
Communication Systems Group Technische Universität Berlin S. Knorr A Geometric Segmentation Approach for the 3D Reconstruction of Dynamic Scenes in 2D.
Fast Mode Decision Algorithm for Residual Quadtree Coding in HEVC Visual Communications and Image Processing (VCIP), 2011 IEEE.
Raquel A. Romano 1 Scientific Computing Seminar May 12, 2004 Projective Geometry for Computer Vision Projective Geometry for Computer Vision Raquel A.
Geometric Transformations
Segmentation of Vehicles in Traffic Video Tun-Yu Chiang Wilson Lau.
Course14 Dynamic Vision. Biological vision can cope with changing world Moving and changing objects Change illumination Change View-point.
Jeong Kanghun CRV (Computer & Robot Vision) Lab..
Representing Moving Images with Layers J. Y. Wang and E. H. Adelson MIT Media Lab.
Motion Estimation Multimedia Systems and Standards S2 IF Telkom University.
Fitting.
BLOCK BASED MOTION ESTIMATION. Road Map Block Based Motion Estimation Algorithms. Procedure Of 3-Step Search Algorithm. 4-Step Search Algorithm. N-Step.
COS 429 PS3: Stitching a Panorama Due November 10 th.
Principles of Video Compression Dr. S. M. N. Arosha Senanayake, Senior Member/IEEE Associate Professor in Artificial Intelligence Room No: M2.06
Computer Photography -Scene Fixed 陳立奇.
Lecture 16: Image alignment
Motion and Optical Flow
Robust Visual Motion Analysis: Piecewise-Smooth Optical Flow
Approximate Models for Fast and Accurate Epipolar Geometry Estimation
EECS 274 Computer Vision Stereopsis.
What have we learned so far?
Range Imaging Through Triangulation
Representing Moving Images with Layers
Representing Moving Images with Layers
Finite Element Surface-Based Stereo 3D Reconstruction
Introduction to Sensor Interpretation
Chapter 11: Stereopsis Stereopsis: Fusing the pictures taken by two cameras and exploiting the difference (or disparity) between them to obtain the depth.
Introduction to Sensor Interpretation
Image Stitching Linda Shapiro ECE P 596.
Presentation transcript:

Technical University of Berlin Communication Systems Group Director: Prof. Thomas Sikora Carsten Clemens Error Concealment for Stereoscopic Sequences ITG Fachausschusstagung 3.2, Juni 2006

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences2 Monoscopic Error Concealment strategies are not well suited for stereoscopic scenario Assumtions –independently coded views of a stereo image pair remaining redundancies between the channels, which can be utilized for error concealment –block based coding (16x16 blocks) Introduction

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences3 Algorithm Overview Identification of corresponding region –feature extraction –feature matching along epipolar line –selection of matches (M-estimator/RANSAC) Projective Transformation –initial parameter set from matches –optimization by Newton Method Smoothing –only in case of discontinuities of depth

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences4 Matching and Transformation projective transformation:

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences5 Selection of feature matches M-estimator –uses all matches with different weights –In some cases the transformation fails, because pixels from outside the image were warped into the erroneous burst. RANSAC (random sample consensus) –uses a number of subsamples (four feature matches) –minimize the sum of squared residues of the boundary region: RANSAC yields better results than M-estimator

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences6 Adapted Newton Method Find the optimal transformation parameter by minimizing a cost function C(k): b is the Border Region of the erroneous block burst

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences7 Adapted Newton Method Iteration step: Problem I: Local minimum solution Initial Parameter set is of prime importance Cost function C(k) over horizontal and vertical translation parameter

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences8 Adapted Newton Method Problem II: Convergence of Newton method Successivly decreasing of border pixel size L after every minimum search Speed of convergence of the Newthon algorithm for different border sizes L

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences9 3D Block Smoothing In case of great discontinuities in depth (variation of disparity) we perform a linear smoothing algorithm towards the surrounding pixel region (3D- BS) Minimization of the intersample variance between neighboring samples and to the block borders

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences10 HQ EC: Results / Example

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences11 Results / Subjective Evaluation Subjective Simulation Results: –Double Stimulus Continuous Quality Scale Method (DSCQS) as phsychovisual test with 15 subjects –Shutterglasses (StereoGraphics) DMOS

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences12 Fast EC: Algorithm Overview Block Search –Directional Diamond Search –SAD Side Match Distortion

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences13 Fast EC: Matching Example Hall SMD determined for each possible position Position with minimum SMD selected Block used for reconstruction

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences14 Fast EC: Subjective Evaluation BALLOONDMOSS.D.conf. interval Interpolation5,691,19±0,65 SBS4,391,12±0,62 TBS2,522,64±1,45 TSBS2,491,37±0,75

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences15 Simple Matching - Example Balloons 720x480, corrupted frame and features

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences16 Simple Matching - Example Reference frame (temporal) with features

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences17 Simple Matching - Example Reference blocks

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences18 Simple Matching - Example Reconstructed frame

Communication Systems Group C. Clemens Technische Universität Berlin Error Concealment for Stereoscopic Sequences19 Publications K. Günther, C. Clemens, and T. Sikora A Fast Displacement-Estimation Based Approach For Stereoscopic Error Concealment PCS 2004, San Francisco C. Clemens, M. Kunter, S. Knorr, and T. Sikora: A hybrid approach for error concealment in stereoscopic images WIAMIS '04, Lissabon M. Kunter, S. Knorr, C. Clemens, and T. Sikora: A gradient based approach for stereoscopic error concealment ICIP '04, Singapore S. Knorr, C. Clemens, M. Kunter, and T. Sikora Robust Concealment for Erroneous Block Bursts in Stereoscopic Images 3D Data Processing, Visualization, and Transmission (3DPVT'04), Thessaloniki, Greece K. Günther, C. Clemens, and T. Sikora A Fast Displacement-Estimation Based Approach For Stereoscopic Error Concealment PCS 2004, San Francisco C. Clemens, M. Kunter, S. Knorr, and T. Sikora: A hybrid approach for error concealment in stereoscopic images WIAMIS '04, Lissabon M. Kunter, S. Knorr, C. Clemens, and T. Sikora: A gradient based approach for stereoscopic error concealment ICIP '04, Singapore S. Knorr, C. Clemens, M. Kunter, and T. Sikora Robust Concealment for Erroneous Block Bursts in Stereoscopic Images 3D Data Processing, Visualization, and Transmission (3DPVT'04), Thessaloniki, Greece