QUICK QUIZ 15.1 (end of section 15.2)

Slides:



Advertisements
Similar presentations
Oscillations and Simple Harmonic Motion:
Advertisements

Chapter 15 Oscillatory Motion.
Physics 6B Oscillations Examples Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Chapter 5 Kinetic Energy
Adapted from Holt book on physics
Simple Harmonic Motion
Moza M. Al-Rabban Professor of Physics
Chapter 14 Oscillations Chapter Opener. Caption: An object attached to a coil spring can exhibit oscillatory motion. Many kinds of oscillatory motion are.
Copyright © 2009 Pearson Education, Inc. Lecture 1 – Waves & Sound a) Simple Harmonic Motion (SHM)
Oscillation.
Measuring Simple Harmonic Motion
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Lecture 18 – Oscillations about Equilibrium
Oscillations Phys101 Lectures 28, 29 Key points:
Measuring Simple Harmonic Motion
Physics 6B Oscillations Prepared by Vince Zaccone
Chapter 13: Oscillatory Motions
NAZARIN B. NORDIN What you will learn: Load transfer, linear retardation/ acceleration Radius of gyration Moment of inertia Simple.
Vibrations and Waves AP Physics Lecture Notes m Vibrations and Waves.
Chapter 11 - Simple Harmonic Motion
Vibrations and Waves Hooke’s Law Elastic Potential Energy Comparing SHM with Uniform Circular Motion Position, Velocity and Acceleration.
Vibrations and Waves m Physics 2053 Lecture Notes Vibrations and Waves.
Periodic Motion. Definition of Terms Periodic Motion: Motion that repeats itself in a regular pattern. Periodic Motion: Motion that repeats itself in.
Oscillations and Waves An oscillation is a repetitive motion back and forth around a central point which is usually an equilibrium position. A special.
Oscillations - SHM. Oscillations In general an oscillation is simply aback and forth motion Since the motion repeats itself, it is called periodic We.
Chapter 15 Oscillatory Motion. Intro Periodic Motion- the motion of an object that regularly repeats There is special case of periodic motion in which.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 13 Physics, 4 th Edition James S. Walker.
Copyright © 2009 Pearson Education, Inc. Chapter 14 Oscillations.
The Physical Pendulum Damped Oscillations Forced Oscillations
Copyright © 2009 Pearson Education, Inc. Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Simple Pendulum Lecture.
When a weight is added to a spring and stretched, the released spring will follow a back and forth motion.
Chapter 14 VIBRATIONS AND WAVES In this chapter you will:  Examine vibrational motion and learn how it relates to waves.  Determine how waves transfer.
Lab 9: Simple Harmonic Motion, Mass-Spring Only 3 more to go!! The force due to a spring is, F = -kx, where k is the spring constant and x is the displacement.
Periodic Motion Motion that repeats itself over a fixed and reproducible period of time is called periodic motion. The revolution of a planet about its.
Oscillatory motion (chapter twelve)
Periodic Motion What is periodic motion?
Uniform Circular Motion Side View of Uniform Circular Motion.
SIMPLE HARMONIC MOTION. STARTER MAKE A LIST OF OBJECTS THAT EXPERIENCE VIBRATIONS:
When a weight is added to a spring and stretched, the released spring will follow a back and forth motion.
Simple Harmonic Motion Simple harmonic motion (SHM) refers to a certain kind of oscillatory, or wave-like motion that describes the behavior of many physical.
Periodic Motions.
Chapter 11: Harmonic Motion
APHY201 1/30/ Simple Harmonic Motion   Periodic oscillations   Restoring Force: F = -kx   Force and acceleration are not constant  
Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium.
The Simple Pendulum.
Simple Harmonic Motion
Simple Harmonic Motion Periodic Motion Simple periodic motion is that motion in which a body moves back and forth over a fixed path, returning to each.
Chapter 16 Vibrations Motion. Vibrations/Oscillations Object at the end of a spring Object at the end of a spring Tuning fork Tuning fork Pendulum Pendulum.
Chapter 14 Springs A TRAMPOLINE exerts a restoring force on the jumper that is directly proportional to the average force required to displace the mat.
1 10. Harmonic oscillator Simple harmonic motion Harmonic oscillator is an example of periodic motion, where the displacement of a particle from.
PHY 151: Lecture Motion of an Object attached to a Spring 12.2 Particle in Simple Harmonic Motion 12.3 Energy of the Simple Harmonic Oscillator.
S H M a n d W a v e s B a s i c s. T h e O s c i l l a t o r When displaced from its vertical equilibrium position, this plastic ruler oscillates back.
Oscillations Waves and Sound. 1. An object swings on the end of a cord as a simple pendulum with period T. Another object oscillates up and down.
Measuring Simple Harmonic Motion
Physics Section 11.1 Apply harmonic motion
When a weight is added to a spring and stretched, the released spring will follow a back and forth motion.
AP Physics Lecture Notes
The Simple Pendulum Unit 8.2
Simple Harmonic Motion
Oscillatory Motion Periodic motion Spring-mass system
Measuring Simple Harmonic Motion
Lecture Outline Chapter 13 Physics, 4th Edition James S. Walker
Active Figure 15.1  A block attached to a spring moving on a frictionless surface. (a) When the block is displaced to the right of equilibrium (x > 0),
Chapter 15: Oscillatory motion
OBJECTIVE QUESTIONS FOR NEET AIIMS JIPMER
Simple Harmonic Motion
Simple Harmonic Motion and Wave Interactions
Oscillation.
Presentation transcript:

QUICK QUIZ 15.1 (end of section 15.2) You hang an object onto a vertically hanging spring and measure the stretch length of the spring to be 1 meter. You then pull down on the object and release it so that it oscillates in simple harmonic motion. The period of this oscillation will be a) about half a second, b) about 1 second, c) about 2 seconds, or d) impossible to determine without knowing the mass or spring constant.

QUICK QUIZ 15.1 ANSWER (c). This problem illustrates an easy method for determining the properties of a spring-object system. When you hang the object, the spring force, kx, will be equal to the weight, mg, so that kx = mg or x/g = m/k. From Equation 15.13,

QUICK QUIZ 15.1 (end of section 15.3) You hang an object onto a vertically hanging spring. You slowly let the object down and it stretches the spring a distance d1. You then remove the object, return the spring to its equilibrium position and reattach the object. This time, instead of slowly letting the object down, you release it all at once and measure the distance the spring stretches, d2, before the object springs back up again. The ratio d2/d1 will be a) 1, b) 2, c) 4, or d) impossible to determine without knowing the mass and spring constant.

QUICK QUIZ 15.2 ANSWER (b). When you slowly let the object down, the object is in static equilibrium and therefore the spring force, kx, is equal to the weight, mg, so that x = d1 = mg/k. When you quickly release the mass, the mass will oscillate between its release point and its lowest point of travel. The initial gravitational potential energy of the mass is converted to spring potential energy when the mass is at its lowest point. Therefore, mgx = kx2/2, so that x = d2 = 2mg/k.

QUICK QUIZ 15.3 (end of section 15.5) You release a pendulum bob from an angle which is 5° from the vertical and measure its period of oscillation. You then repeat the experiment but from an angle which is 90° from the vertical. The period of oscillation for the pendulum in the second case will be a) greater than the first case, b) less than the first case, c) the same as the first case, d) impossible to determine.

QUICK QUIZ 15.3 ANSWER (a) and (d). Equation 15.24 for the simple pendulum is valid for small angles when sin q ~ q. Only then is the period independent of the amplitude. For q = 5° or 0.0873 radians, sin q is 0.0872 and Equation 15.24 is clearly valid. For q = 90° or 1.57 radians, sin q is 1 and Equation 15.24 is not valid. Otherwise, the equation, valid for any angle must be used. This differential equation can not be easily solved to determine the period of oscillation. However, a simple experiment will show that the period of oscillation for an angle of 90° is only about 15% greater than for an angle of 5°.

QUICK QUIZ 15.4 (end of section 15.6) A damped oscillator undergoes exponentially decaying oscillatory motion, as in the figure shown here. After 5 seconds of such motion, the amplitude (the quantity Ae-bt/2m) is a factor of 2 smaller than its initial value at t = 0. After 15 seconds of motion, the amplitude will be a) a factor of 4 smaller than its initial value at t = 0, b) a factor of 6 smaller than its initial value at t = 0, c) a factor of 8 smaller than its initial value at t = 0, or d) impossible to determine without knowing the constants b and m.

QUICK QUIZ 15.4 ANSWER (c). The negative exponential function has the property that it will decrease by the same factor over the same period of time. Relating the amplitude after 5 seconds (t1) to the initial amplitude we have, After another 5 seconds we have, So after 15 seconds we get,

QUICK QUIZ 15.5 (end of section 15.7) Vibration isolation tables are designed to isolate sensitive instruments, for example lasers and microscopes, from vibrations in the floor. The tables behave like a mass and a spring with small damping and act like a forced oscillator with the floor as the driving force. Typical floors vibrate with a frequency of about 20 Hz and this driving frequency is applied to the table. It is desirable to keep the amplitude of vibration of the isolation table to a minimum and the natural frequency of the table is adjusted to be significantly smaller than the driving frequency of the floor. Isolation tables should therefore be designed to have a) a large mass and a small spring constant, b) a small mass and a large spring constant, c) a large mass and a large spring constant, or d) a small mass and a small spring constant.

QUICK QUIZ 15.5 ANSWER (a). The equation for the natural frequency, wo= (k/m)1/2, indicates that the spring constant should be small and the mass large to produce a small natural frequency. From examination of Equation 15.36, a large difference in w and wo, and in addition a large mass m, will reduce the vibration amplitude of the table by a substantial amount.