Quantum Lower Bounds The Polynomial and Adversary Methods Scott Aaronson September 14, 2001 Prelim Exam Talk.

Slides:



Advertisements
Similar presentations
1+eps-Approximate Sparse Recovery Eric Price MIT David Woodruff IBM Almaden.
Advertisements

Optimal Space Lower Bounds for All Frequency Moments David Woodruff MIT
Quantum Computing: Whats It Good For? Scott Aaronson Computer Science Department, UC Berkeley January 10,
Computation, Quantum Theory, and You Scott Aaronson, UC Berkeley Qualifying Exam May 13, 2002.
The Polynomial Method In Quantum and Classical Computing Scott Aaronson (MIT) OPEN PROBLEM.
Quantum Lower Bounds You probably Havent Seen Before (which doesnt imply that you dont know OF them) Scott Aaronson, UC Berkeley 9/24/2002.
Quantum Lower Bound for the Collision Problem Scott Aaronson 1/10/2002 quant-ph/ I was born at the Big Bang. Cool! We have the same birthday.
The Learnability of Quantum States Scott Aaronson University of Waterloo.
Quantum t-designs: t-wise independence in the quantum world Andris Ambainis, Joseph Emerson IQC, University of Waterloo.
Quantum Software Copy-Protection Scott Aaronson (MIT) |
The Future (and Past) of Quantum Lower Bounds by Polynomials Scott Aaronson UC Berkeley.
SPEED LIMIT n Quantum Lower Bounds Scott Aaronson (UC Berkeley) August 29, 2002.
Lower Bounds for Local Search by Quantum Arguments Scott Aaronson.
Quantum Computing and Dynamical Quantum Models ( quant-ph/ ) Scott Aaronson, UC Berkeley QC Seminar May 14, 2002.
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
Quantum Search of Spatial Regions Scott Aaronson (UC Berkeley) Joint work with Andris Ambainis (U. Latvia)
Quantum Double Feature Scott Aaronson (MIT) The Learnability of Quantum States Quantum Software Copy-Protection.
Lower Bounds for Local Search by Quantum Arguments Scott Aaronson (UC Berkeley) August 14, 2003.
How to Solve Longstanding Open Problems In Quantum Computing Using Only Fourier Analysis Scott Aaronson (MIT) For those who hate quantum: The open problems.
Oracles Are Subtle But Not Malicious Scott Aaronson University of Waterloo.
Polynomial Interpolation over Composites. Parikshit Gopalan Georgia Tech.
Numerical Linear Algebra in the Streaming Model Ken Clarkson - IBM David Woodruff - IBM.
Optimal Space Lower Bounds for all Frequency Moments David Woodruff Based on SODA 04 paper.
Sublinear-time Algorithms for Machine Learning Ken Clarkson Elad Hazan David Woodruff IBM Almaden Technion IBM Almaden.
Tight Lower Bounds for the Distinct Elements Problem David Woodruff MIT Joint work with Piotr Indyk.
On the degree of symmetric functions on the Boolean cube Joint work with Amir Shpilka.
Complexity Theory Lecture 6
INHERENT LIMITATIONS OF COMPUTER PROGRAMS CSci 4011.
Shortest Vector In A Lattice is NP-Hard to approximate
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Chapter 11 Limitations of Algorithm Power Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Lecture 24 MAS 714 Hartmut Klauck
Efficient Discrete-Time Simulations of Continuous- Time Quantum Query Algorithms QIP 2009 January 14, 2009 Santa Fe, NM Rolando D. Somma Joint work with.
Totally Unimodular Matrices
Having Proofs for Incorrectness
Totally Unimodular Matrices Lecture 11: Feb 23 Simplex Algorithm Elliposid Algorithm.
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
Quantum Algorithms II Andrew C. Yao Tsinghua University & Chinese U. of Hong Kong.
Foundations of Privacy Lecture 11 Lecturer: Moni Naor.
T he Separability Problem and its Variants in Quantum Entanglement Theory Nathaniel Johnston Institute for Quantum Computing University of Waterloo.
C&O 355 Mathematical Programming Fall 2010 Lecture 17 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
Correlation testing for affine invariant properties on Shachar Lovett Institute for Advanced Study Joint with Hamed Hatami (McGill)
Diophantine Approximation and Basis Reduction
New quantum lower bound method, with applications to direct product theorems Andris Ambainis, U. Waterloo Robert Spalek, CWI, Amsterdam Ronald de Wolf,
Approximating Minimum Bounded Degree Spanning Tree (MBDST) Mohit Singh and Lap Chi Lau “Approximating Minimum Bounded DegreeApproximating Minimum Bounded.
Quantum Computing MAS 725 Hartmut Klauck NTU TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A.
October 1 & 3, Introduction to Quantum Computing Lecture 1 of 2 Introduction to Quantum Computing Lecture 1 of 2
AN ORTHOGONAL PROJECTION
Quantum Computing MAS 725 Hartmut Klauck NTU
Quantum algorithms vs. polynomials and the maximum quantum-classical gap in the query model.
Exact quantum algorithms Andris Ambainis University of Latvia.
Strings Basic data type in computational biology A string is an ordered succession of characters or symbols from a finite set called an alphabet Sequence.
Quantum Computing MAS 725 Hartmut Klauck NTU
Forrelation: A Problem that Optimally Separates Quantum from Classical Computing.
Quantum algorithms are at most polynomially faster for any symmetric function Andris Ambainis University of Latvia.
Quantum Computation Stephen Jordan. Church-Turing Thesis ● Weak Form: Anything we would regard as “computable” can be computed by a Turing machine. ●
C&O 355 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
Density matrix and its application. Density matrix An alternative of state-vector (ket) representation for a certain set of state-vectors appearing with.
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
P & NP.
Lap Chi Lau we will only use slides 4 to 19
Topics in Algorithms Lap Chi Lau.
Introduction to Quantum Computing Lecture 1 of 2
Tight Fourier Tails for AC0 Circuits
Polynomial Optimization over the Unit Sphere
RS – Reed Solomon List Decoding.
An Upper Bound on the GKS Game via Max Bipartite Matching
Chapter 11 Limitations of Algorithm Power
Scott Aaronson (UT Austin) UNM, Albuquerque, October 18, 2018
Switching Lemmas and Proof Complexity
Presentation transcript:

Quantum Lower Bounds The Polynomial and Adversary Methods Scott Aaronson September 14, 2001 Prelim Exam Talk

Motivation Quantum computing: model of computation based on our best-confirmed physical theory To understand quantum computing, must know limitations as well as capabilities E.g., can QCs decide NP in polynomial time? –Smart money says no, but proving it implies P NP Popular alternative: study restricted models

Talk Overview Intro to Quantum Model Polynomial Method (Beals et al. 1998) – N lower bound for search –Part of D(f) 1/6 bound for total functions Adversary Method (Ambainis 2000) –Density matrices and entanglement – N lower bound for search (again)

The Quantum Model State of computer: superposition over binary strings To each string Y, associate complex amplitude Y Y | Y | 2 = 1 On measuring, see Y with probability | Y | 2 Dirac ket notation: State written | = Y Y |Y Each |Y is called a basis state

Unitary Evolution Quantum state changes by multiplying amplitude vector with unitary matrix: | (t+1) = U| (t) U is unitary iff U -1 =U, conjugate transpose (Linear transformation that preserves norm=1) Example: Circuit model: U must be efficiently computable Black-box model: No such restriction 1/ 2 -1/ 2 1/ 2 ( |0 + |1 )/ 2 = |1

Query Model Algorithm state is i,z,a i,z,a |i,z,a (i: index to query z: workspace a: answer bit) Input: X=x 1 …x n {0,1} n Query replaces each |i,z,a by (-1) x[i] |i,z,a Algorithm alternates unitaries and queries: U 0 O 1 U 1 … U T-1 O T U T U i are arbitrary, but independent of input By end, i,z | i,z,f(X) | 2 2/3 for every X

Lower Bounds by Polynomials Beals, Buhrman, Cleve, Mosca, de Wolf, FOCS 1998 Key Idea Let Q 2 (f) = minimum no. of queries used by quantum alg that evaluates f:{0,1} n {0,1} w.p. 2/3 for all X=x 1 …x n {0,1} n If quantum algorithm makes T queries, acceptance probability is degree-2T polynomial over input bits Implies Q 2 (f) ~deg(f)/2, where ~deg(f) = min degree of polynomial p s.t. |p(X)–f(X)| 1/3 for all X Show ~deg(f) is large for function f of interest

Lemma: Q 2 (f) ~deg(f)/2. Proof: After T queries, amplitude i,z,a of basis state |i,z,a is a complex-valued multilinear polynomial of degree T over x 1,…,x n. By induction. Base case: Before any queries, i,z,a is degree-0 polynomial. Query: Replaces each i,z,a by (1-2x i ) i,z,a. Increases degree by 1. Since x i {0,1}, can replace x i x i by x i. Unitary: Replaces each i,z,a by linear combination of i,z,a. So degree doesnt increase. Separating real and imaginary parts, i,z | i,z,f(X) | 2 is a real- valued multilinear polynomial of degree 2T.

Lemma (Minsky, Papert 1968): If p: R n R is a multilinear polynomial, theres a polynomial q: R R s.t. (1) deg(q) deg(p), (2) q(|X|) = p sym (X) = (1/n!) S(n) p( (X)) (|X|: Hamming weight of XS(n): Symmetric group) Proof: Let d = deg(p sym ) deg(p). Let V j = sum of all products of j distinct variables. Since p sym is symmetrical, p sym (X) = a 0 + a 1 V 1 + … + a d V d for some a i R. V j assumes value choose(|X|,j) = |X|(|X|-1)(|X|-2)…(|X|-j+1)/j! on X, which is a polynomial of degree j of |X|. So construct q(|X|) of degree d accordingly.

Approximate Degree of OR Theorem (Ehlich, Zeller 1964; Rivlin, Cheney 1966): Let p: R R be a polynomial s.t. b 1 p(i) b 2 for every integer 0 i n and |dp(x)/dx| c for some real 0 x n. Then deg(p) [cn / (c + b 2 – b 1 )]. Corollary (Nisan, Szegedy 1994): ~deg(OR n ) = ( n). Proof: Let r: R R be symmetrization of approximating polynomial for OR n. Then 0 r(i) 1 for every integer 0 i n, and dr(x)/dx 1/3 for some x [0,1] because r(0) 1/3 and r(1) 2/3. So deg(r) [n/3 / (1/3 + 1 – 0)].

Definitions: C(f) and bs(f) For total Boolean function f and input X: X B = X with variables in set B flipped Certificate complexity C X (f) = Minimum size of set A s.t. f(X) = f(X B ) for all B disjoint from A C(f) = max X C X (f) Block sensitivity bs X (f) = Maximum number of disjoint sets B s.t. f(X) f(X B ) bs(f) = max X bs X (f) Immediate: bs(f) C(f) D(f), D(f) deterministic query complexity

Bound for Total Boolean Functions Theorem (Beals et al.): D(f) = O(Q 2 (f) 6 ) for all total f. Proof overview: 1.bs(f) = O(Q 2 (f) 2 ). Follows easily from n lower bound for OR n. 2.C(f) bs(f) 2. Proved on next slide. 3.D(f) C(f) bs(f). Proof omitted. Idea: To evaluate f, repeatedly query a 1-certificate consistent with everything queried so far. Need to repeat at most bs(f) times.

Lemma (Nisan 1991): C(f) bs(f) 2. Proof: Let X {0,1} n be input, B 1,…,B b be disjoint minimal blocks s.t. b = bs X (f) bs(f). Claim: C = i B i {0,1}, variables set according to X, is a certificate for X of size bs(f) 2. 1.If C were not a certificate, let X be input that agrees with C s.t. f(X) f(X). Let X = X B. Then B is a sensitive block for X disjoint from i B i, contradiction. 2.For each 1 i b, |B i | bs(f). For if we flip a B i -variable in X B[i], function value must flip from f(X B[i] ) to f(X), otherwise B i wouldnt be minimal. So every singleton in B i is a sensitive block for f on X B[i]. Hence size of C is bs(f) bs(f). (Is lemma tight? Open problem!)

Quantum Adversary Method Ambainis, STOC2000, to appear in JCSS Key Idea –Give algorithm superposition of inputs –Consider (I=inputs, A=algorithm) as bipartite quantum state. –Initially I and A are unentangled. By end of computation, they must be highly entangled. –Upper-bound how much entanglement can increase via a single query. –How? Density matrices.

Density Matrices Mixed state: distribution over quantum states I.e., one part of composite state (Not mixed: pure) Non-unique decomposition into pure states: |0 w.p. ½, |1 w.p. ½ = (|0 +|1 )/ 2 w.p. ½, (|0 -|1 )/ 2 w.p. ½ Density matrix: = i p i | i i | where | | has (i,j) entry i * j represents all measurable information

Entanglement Quantum state is entangled if not a mixture of product states (States for which measuring one subsystem reveals nothing about other subsystems) Examples: ½(|00 +|01 +|10 +|11 ): unentangled |00 w.p. ½, |11 w.p. ½: unentangled (|00 +|11 )/ 2: entangled (EPR pair)

Plan of Attack Input: (1/ |S|) X S |X t = i,z,a p t,i,z,a | t,i,z,a t,i,z,a | after t queries Initially: input and algorithm unentangled 0 is pure state ( 0 ) XY = 1/|S| for all X,Y By end: highly entangled T highly mixed |( T ) XY | 1/(3|S|) (say) for all X,Y with f(X) f(Y) Goal: Upper-bound A t = X,Y:f(X) f(Y) (|( t-1 ) XY |-|( t ) XY |)

Lemma: For all X,Y with f(X) f(Y), |( 0 ) XY |-|( T ) XY | = (1/|S|). Proof: Let i,z,a i,z,a |i,z,a, i,z,a i,z,a |i,z,a be final algorithm states on X and Y respectively. Then ( T ) XY = (1/|S|) i,z,a i,z,a * i,z,a (1/|S|) [ i,z,a | i,z,a | 2 ] [ i,z,a | i,z,a | 2 ] (by Cauchy-Schwarz) (1/|S|) { [ i,z | i,z,0 | 2 ] [ i,z | i,z,0 | 2 ] + [ i,z | i,z,1 | 2 ] [ i,z | i,z,1 | 2 ] } (2/|S|) [ (1- )], where is error prob.

Theorem: Q 2 (OR n ) = ( n). Proof: Let S contain all X {0,1} n of Hamming wt 1. A 0 =n-1 and A T n/2 (say); we show A t-1 -A t = O( n). A t-1 -A t X,Y:f(X) f(Y) |( ) XY -() XY | ( = t-1, = t ) i,z,a p i,z,a X,Y:f(X) f(Y) |( i,z,a ) XY -( i,z,a ) XY |. Now ( i,z,a ) XY = i,z,a,X * i,z,a,Y, since i,z,a is a pure state. A query maps i,z,a,X to (-1) x[i] i,z,a,X, ( i,z,a ) XY to (- 1) x[i]+y[i] ( i,z,a ) XY. And for all X,Y, x[i] y[i] for only two values of i, so only four rows/columns change. So A t-1 -A t 8 max Y X | i,z,a,X * i,z,a,Y | 8 X | i,z,a,X | = O( n) by Cauchy-Schwarz.

Game-Tree Search For some problems, adversary method yields better bound than polynomial method I.e. AND of n ORs of n vars each Upper bound: recursive Grover, O( n log n) bs(f) = O(Q 2 (f) 2 ) yields only Q 2 (f) = ( 4 n) Adversary method: Q 2 (f) = ( n) Idea: each X S can be changed in n places to produce Y s.t. f(X) f(Y), Y S.