How Much Information Is In A Quantum State? Scott Aaronson MIT |

Slides:



Advertisements
Similar presentations
How Much Information Is In A Quantum State? Scott Aaronson MIT.
Advertisements

How Much Information Is In Entangled Quantum States? Scott Aaronson MIT |
The Learnability of Quantum States Scott Aaronson University of Waterloo.
Quantum t-designs: t-wise independence in the quantum world Andris Ambainis, Joseph Emerson IQC, University of Waterloo.
Quantum Software Copy-Protection Scott Aaronson (MIT) |
The Learnability of Quantum States Scott Aaronson University of Waterloo.
How Much Information Is In A Quantum State?
Multilinear Formulas and Skepticism of Quantum Computing Scott Aaronson UC Berkeley IAS.
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
Quantum Double Feature Scott Aaronson (MIT) The Learnability of Quantum States Quantum Software Copy-Protection.
A Full Characterization of Quantum Advice Scott Aaronson Andrew Drucker.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
Pretty-Good Tomography Scott Aaronson MIT. Theres a problem… To do tomography on an entangled state of n qubits, we need exp(n) measurements Does this.
How to Solve Longstanding Open Problems In Quantum Computing Using Only Fourier Analysis Scott Aaronson (MIT) For those who hate quantum: The open problems.
Scott Aaronson Institut pour l'Étude Avançée Le Principe de la Postselection.
QMA/qpoly PSPACE/poly: De-Merlinizing Quantum Protocols Scott Aaronson University of Waterloo.
The Equivalence of Sampling and Searching Scott Aaronson MIT.
The Computational Complexity of Linear Optics Scott Aaronson and Alex Arkhipov MIT vs.
Quantum Complexity and Fundamental Physics
When Qubits Go Analog A Relatively Easy Problem in Quantum Information Theory Scott Aaronson (MIT)
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson (MIT) Joint work with Alex Arkhipov.
Solving Hard Problems With Light Scott Aaronson (Assoc. Prof., EECS) Joint work with Alex Arkhipov vs.
The Computational Complexity of Linear Optics Scott Aaronson (MIT) Joint work with Alex Arkhipov vs.
Scott Aaronson (MIT) The Limits of Computation: Quantum Computers and Beyond.
Quantum Computation and Quantum Information – Lecture 2
THE QUANTUM COMPLEXITY OF TIME TRAVEL Scott Aaronson (MIT)
Quantum Computing MAS 725 Hartmut Klauck NTU
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Machine Learning Week 2 Lecture 1.
The Central Limit Theorem Section Starter Assume I have 1000 pennies in a jar Let X = the age of a penny in years –If the date is 2007, X = 0 –If.
Machine Learning Week 2 Lecture 2.
Superdense coding. How much classical information in n qubits? Observe that 2 n  1 complex numbers apparently needed to describe an arbitrary n -qubit.
Probably Approximately Correct Model (PAC)
Quantum Technology Essential Question:
Quantum Computing Lecture 1 Michele Mosca. l Course Outline
P. STATISTICS LESSON 7.2 ( DAY 2)
Alice and Bob’s Excellent Adventure
Chapter 18: Sampling Distribution Models
Device-independent security in quantum key distribution Lluis Masanes ICFO-The Institute of Photonic Sciences arXiv:
1 Chapter 10: Introduction to Inference. 2 Inference Inference is the statistical process by which we use information collected from a sample to infer.
Kolmogorov Complexity and Universal Distribution Presented by Min Zhou Nov. 18, 2002.
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
CENTER FOR EXOTIC QUANTUM SYSTEMS CEQS Preskill 1983 Kitaev 2002 Refael 2005 Motrunich 2006 Fisher 2009 Historically, Caltech physics has focused on the.
A Question About Quantum Finite Automata Scott Aaronson (MIT) Is there a QFA that takes as input an infinite sequence of i.i.d. coin flips, and whose limiting.
NP-complete Problems Prof. Sin-Min Lee Department of Computer Science.
8.4.2 Quantum process tomography 8.5 Limitations of the quantum operations formalism 量子輪講 2003 年 10 月 16 日 担当:徳本 晋
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
The Kind of Stuff I Think About Scott Aaronson (MIT) LIDS Lunch, October 29, 2013 Abridged version of plenary talk at NIPS’2012.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Sampling Distributions Chapter 18. Sampling Distributions A parameter is a number that describes the population. In statistical practice, the value of.
Random Access Codes and a Hypercontractive Inequality for
PAC-Learning and Reconstruction of Quantum States
The complexity of the Separable Hamiltonian Problem
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Shadow Tomography of Quantum States
Shadow Tomography of Quantum States
Scott Aaronson (UT Austin) MIT, November 20, 2018
Quantum Information Theory Introduction
New Results on Learning and Reconstruction of Quantum States
New Results on Learning and Reconstruction of Quantum States
Computational Learning Theory
New Results on Learning and Reconstruction of Quantum States
Computational Learning Theory
Quantum Computing and the Quest for Quantum Computational Supremacy
Online Learning of Quantum States Scott Aaronson (UT Austin)
Gentle Measurement of Quantum States and Differential Privacy
Spin Many quantum experiments are done with photon polarization instead of electron spin Here is the correspondence between the two And the measurement.
Scott Aaronson (UT Austin) UNM, Albuquerque, October 18, 2018
Gentle Measurement of Quantum States and Differential Privacy *
Presentation transcript:

How Much Information Is In A Quantum State? Scott Aaronson MIT |

The Problem In quantum mechanics, a state of n entangled particles requires at least 2 n complex numbers to specify To a computer scientist, this is probably the central fact about quantum mechanics But why should we worry about it?

Answer 1: Quantum State Tomography Task: Given lots of copies of an unknown quantum state, produce an approximate classical description of it Not something I made up! As seen in Science & Nature Central problem: To do tomography on an entangled state of n particles, you need ~c n measurements Current record: 8 particles / ~656,000 experiments (!)

Answer 2: Quantum Computing Skepticism Some physicists and computer scientists believe quantum computers will be impossible for a fundamental reason For many of them, the problem is that a quantum computer would manipulate an exponential amount of information using only polynomial resources LevinGoldreicht HooftDaviesWolfram But is it really an exponential amount?

Today well tame the exponential beast Idea: Shrink quantum states down to reasonable size by viewing them operationally Analogy: A probability distribution over n-bit strings also takes ~2 n bits to specify. But that fact seems to be more about the map than the territory Holevos Theorem (1973): By sending an n-qubit quantum state, Alice can transmit no more than n classical bits to Bob This talk: New limitations on the information content of quantum states [A. 2004], [A. 2006], [A.-Dechter 2008], [A. Drucker 2009] Lesson: The linearity of QM helps tame the exponentiality of QM

The Absent-Minded Advisor Problem Can you give your graduate student a quantum state with n qubits (or 10n, or n 3, …)such that by measuring in a suitable basis, the student can learn your answer to any one yes-or-no question of size n? NO [Ambainis, Nayak, Ta-Shma, Vazirani 1999] Indeed, quantum communication is no better than classical for this problem as n

On the Bright Side… Theorem (A. 2004): In that case, it suffices for Alice to send Bob only ~n log n log|S| classical bits Suppose Alice wants to describe an n-qubit quantum state | to Bob … well enough that, for any 2- outcome measurement M in some finite set S, Bob can estimate the probability that M accepts |

| ALL MEASUREMENTS ALL MEASUREMENTS PERFORMABLE USING n 2 QUANTUM GATES

How does the theorem work? Alice is trying to describe the quantum state to Bob In the beginning, Bob knows nothing about, so he guesses its the maximally mixed state 0 =I Then Alice helps Bob improve, by repeatedly telling him a measurement E t S on which his current guess t-1 badly fails Bob lets t be the state obtained by starting from t-1, then performing E t and postselecting on getting the right outcome I 1 2 3

Just two tiny problems with this compression theorem… 1.Computing the classical compressed representation of quantum state seems astronomically hard 2.Given the compressed representation, computing the probability some measurement on the state accepts also seems astronomically hard The Quantum Occams Razor Theorem [A. 2006] at least addresses the first problem…

Let | be an unknown quantum state of n particles Suppose you just want to be able to estimate the acceptance probabilities of most measurements E drawn from some probability distribution D Then it suffices to do the following, for some m=O(n): 1.Choose m measurements independently from D 2.Go into your lab and estimate acceptance probabilities of all of them on | 3.Find any hypothesis state approximately consistent with all measurement outcomes Quantum Occams Razor Theorem Quantum states are PAC-learnable

Numerical Simulation [A.-Dechter 2008] We implemented this pretty-good quantum state tomography method in MATLAB, using a fast convex programming method developed specifically for this application [Hazan 2008] We then tested it (on simulated data) using an MIT cluster We studied how the number of sample measurements m needed for accurate predictions scales with the number of qubits n, for n10 Result of experiment: My theorem appears to be true

Recap: Given an unknown n-qubit quantum state, and a set S of two-outcome measurements… Learning theorem: Any hypothesis state consistent with a small number of sample points behaves like on most measurements in S Postselection theorem: A particular state T (produced by postselection) behaves like on all measurements in S Dream theorem: Any state that passes a small number of tests behaves like on all measurements in S [A.-Drucker 2009]: The dream theorem holds Caveat: will have more qubits than, and in general be a very different state Implication: Can get a quantum state that satisfies exp(n) conditions by imposing only poly(n) constraints

Summary In many natural scenarios, the exponentiality of quantum states is an illusion That is, theres a short (though possibly cryptic) classical string that specifies how the quantum state behaves, on any measurement you could actually perform Applications: Pretty-good quantum state tomography, characterization of quantum computers with magic initial states… Biggest open problem: Find special classes of quantum states that can be learned in a computationally efficient way Experimental demonstration would be nice too