Stable Equilibrium Unstable.

Slides:



Advertisements
Similar presentations
If θ/z = 0, the atmosphere is said to be neutral,or neutrally stratified, and the lapse rate is equal to the dry adiabatic lapse rate (DALR) Γ d ~= 10.
Advertisements

4. 2 Moist air thermodynamics (Reading Text
Cloud Development and Precipitation
LAB 6 10/16. Stability – Lapse Rate The rate at which a parcel cools as it rises. A dry* parcel cools at 10 degrees Celsius per kilometer***. A moist**
Cloud Development and Forms
Atmospheric Destabilization Processes Upper Level Mixed Layer Synoptic Lifting Dynamic Destabilization Differential Advection.
Part 2. Water in the Atmosphere Chapter 6 Cloud Development and Forms.
Atmospheric Stability
Copyright © 2010 R.R. Dickerson & Z.Q. Li 1 The Slice Method Chapt 4 page 51. A conceptual model accounting for compensating motion by ambient air as a.
Climatology Lecture 5 Michael Palmer Room 119, Atmospheric Physics ‘Vertical Motion in the Atmosphere’ …Continued...
Stability & Movement Figure 7.1 A rock, like a parcel of air, that is in stable equilibrium will return to its original position when pushed. If the rock.
Atmospheric Stability
Atmospheric Stability and Cloud Formation. RECAP Mechanical equilibrium: stable, unstable, neutral. Adiabatic expansion/compression: no heat exchange.
Vertical Air Motion. Air Parcels Ascend/Descend Adiabatically Expansional CoolingCompressional heating.
Tephigrams ENVI1400 : Lecture 8.
EG1204: Earth Systems: an introduction Meteorology and Climate Lecture 5 Atmospheric Instability.
Stability & Skew-T Diagrams
Textbook chapter 2, p chapter 3, p chapter 4, p Stability and Cloud Development.
Lecture 5.2: Stability Are you stable or unstable? Does it depend on the situation?
Outline Further Reading: Chapter 06 of the text book - stability and vertical motions - five examples - orographic precipitation Natural Environments:
Weather Cloud Formation May 19, Adiabatic Temperature Changes When air is allowed to expand, it cools, and when its is compressed, it warms. Do.
Humidity, Saturation, and Stability
MET 61 1 MET 61 Introduction to Meteorology MET 61 Introduction to Meteorology - Lecture 6 Stability Dr. Eugene Cordero San Jose State University W&H:
Air stability problem Surface air = 35 o C 4000m = -10 o C Dewpoint = +10 o C.
Moisture and Atmospheric Stability
METEO 003 LAB 6 Due Friday Oct. 17 th. Chapter 8 Question 1 a,b,c Radiosonde: instrument carried by a weather balloon to measure atmospheric variables.
Water in the Atmosphere Water vapor in the air Saturation and nucleation of droplets Moist Adiabatic Lapse Rate Conditional Instability Cloud formation.
Lapse Rates and Stability of the Atmosphere
Thermodynamics, Buoyancy, and Vertical Motion
Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic “Lapse Rates” Convective Motions.
Chapter 4 Moisture and Atmospheric Stability. Steam Fog over a Lake.
Atmospheric Stability & Instability
Lesson 15 Adiabatic Processes
Chapter 11 Section 2 State of Atmosphere. Temperature vs. Heat Temperature: measures the movement of molecules  Faster = Warmer  Slower = Colder  Measured.
1 The Thermodynamic Diagram Adapted by K. Droegemeier for METR 1004 from Lectures Developed by Dr. Frank Gallagher III OU School of Meteorology.
CHAPTER 5 CLOUDS AND STABILITY CHAPTER 5 CLOUDS AND STABILITY.
ThermodynamicsM. D. Eastin We just the covered the large-scale hydrostatic environment… We now need to understand whether a small-scale moist air parcel.
Lab 6: Saturation & Atmospheric Stability
Section 04 Adiabatic Processes and Stability Lessons 12 & 13.
Atmospheric Moisture Lapse Rate By K. Y. NG 105 Temp. °C Height (m) CondensationLevelDALR  10°C /  1000 m SALR  5°C.
* Reading Assignments: All Sections. 8. Hydrostatic Stability Describe the states of vertical stratification of atmosphere: * Stable equilibrium * Unstable.
Key Terms and Concepts ELR--Environmental Lapse Rate 5°C-6.5°C/1000 m – temperature of the STILL air as you ascend through the troposphere. ALR--Adiabatic.
Meteo 003: Lab 6 Chapter 8: 1abc, 2abcd, 7ab, 9a, 11ab Chapter 9: 2, 6ab.
Water can exist in 3 phases, depending upon pressure and temperature.
Stability. For these lectures, you will need to review the Skew- T/Log P diagram. The setup of this diagram is shown here. Isotherms are pink slanting.
Chapter 6. Importance of Clouds  Release heat to atmosphere  Help regulate energy balance  Indicate physical processes.
Atmospheric Stability Terminology I Hydrostatic Equilibrium –Balance, in the vertical, between PGF and gravity –The general state of the atmosphere –Net.
Atmospheric Stability The resistance of the atmosphere to vertical motion. Stable air resists vertical motion Unstable air encourages vertical motion.
Skew T Log P Diagram AOS 330 LAB 10 Outline Static (local) Stability Review Critical Levels on Thermodynamic Diagram Severe Weather and Thermodynamic.
Lab 9 – Due Nov 14 Chapter 13 10a,b,c Chapter 14 3a,b Chapter 15 1a,d 5a,b,c 6 8a,b,c 11a.
Atmospheric Stability and Air Masses
Cloud Formation  Ten Basic Types of Clouds (Genera): l High: Ci, Cs, Cc l Middle: As, Ac l Low: St, Ns, Sc l Clouds of Great Vertical Extent: Cu, Cb 
Meteo 3: Chapter 8 Stability and Cloud Types Read Chapter 8.
Chapter 6 Stability and Cloud Development. Stability & Cloud Development This chapter discusses: 1.Definitions and causes of stable and unstable atmospheric.
A Major Component of Earth’s Weather. The Hydrologic Cycle Water can exist as a solid, liquid, or gas on Earth. The movement of water from different reservoirs.
Exam 2 Review – Main Topics
18.2 Cloud Formation I. Air Compression and Expansion
Stability and Cloud Development
Atmospheric Destabilization Processes
Atmospheric Stability
Stability.
Atmospheric Stability
Lapse Rate Poisson equation: d ( ).
Stability and Cloud Development
ATOC 4720: class 14 Saturated-adiabatic and pseudoadiabatic processes
Water in the Atmosphere
Robert Fovell Meteorology – Lecture 9 Robert Fovell
Atmospheric Stability and Cloud Formation
STABLE AND UNSTABLE ATMOSPHERE
Atmospheric Stability
Presentation transcript:

Stable Equilibrium Unstable

Neutral Equilibrium

?_________ ? Equilibrium

? ______ ? Equilibrium

Unsaturated Air Adiabatic cooling Adiabatic warming

Saturated Air (on the way up) Adiabatic cooling Adiabatic warming 18 oC 18 oC Adiabatic warming 24 oC 28 oC 30 oC 38 oC

Stable Atmosphere Dry air Lifted, unsaturated air at each level is colder and heavier than the air around it. If given the chance the parcel would return to its original position

Stable Atmosphere Moist air

Unstable Atmosphere Dry air

Unstable Atmosphere Moist Air air

Stable Atmosphere Dry air

Unstable Atmosphere Moist air

Making the air more stable Do Both Warm the air above Cool the air below

Making the air more unstable Do Both cool the air above warm the air below

Subsidence Inversion (creating a stable environment through sinking air) +4.6 km = + 46 °C +4.2 km = + 42 °C

More or Less Stable?

Convective instability (creating an unstable environment through rising air)