How to Solve Longstanding Open Problems In Quantum Computing Using Only Fourier Analysis Scott Aaronson (MIT) For those who hate quantum: The open problems.

Slides:



Advertisements
Similar presentations
Closed Timelike Curves Make Quantum and Classical Computing Equivalent
Advertisements

Computation, Quantum Theory, and You Scott Aaronson, UC Berkeley Qualifying Exam May 13, 2002.
The Polynomial Method In Quantum and Classical Computing Scott Aaronson (MIT) OPEN PROBLEM.
Quantum Lower Bounds You probably Havent Seen Before (which doesnt imply that you dont know OF them) Scott Aaronson, UC Berkeley 9/24/2002.
Quantum Lower Bound for the Collision Problem Scott Aaronson 1/10/2002 quant-ph/ I was born at the Big Bang. Cool! We have the same birthday.
Quantum Lower Bounds The Polynomial and Adversary Methods Scott Aaronson September 14, 2001 Prelim Exam Talk.
How Much Information Is In Entangled Quantum States? Scott Aaronson MIT |
The Learnability of Quantum States Scott Aaronson University of Waterloo.
Quantum t-designs: t-wise independence in the quantum world Andris Ambainis, Joseph Emerson IQC, University of Waterloo.
Are Quantum States Exponentially Long Vectors? Scott Aaronson (who did and will have an affiliation) (did: IASwill: Waterloo) Distributions over n-bit.
Quantum Versus Classical Proofs and Advice Scott Aaronson Waterloo MIT Greg Kuperberg UC Davis | x {0,1} n ?
Quantum Software Copy-Protection Scott Aaronson (MIT) |
Hawking Quantum Wares at the Classical Complexity Bazaar Scott Aaronson (MIT)
The Future (and Past) of Quantum Lower Bounds by Polynomials Scott Aaronson UC Berkeley.
SPEED LIMIT n Quantum Lower Bounds Scott Aaronson (UC Berkeley) August 29, 2002.
)New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers( סקוט אהרונסון )Scott Aaronson( MIT עדויות חדשות שקשה לדמות את מכניקת הקוונטים
Lower Bounds for Local Search by Quantum Arguments Scott Aaronson.
Multilinear Formulas and Skepticism of Quantum Computing Scott Aaronson UC Berkeley IAS.
Quantum Computing and Dynamical Quantum Models ( quant-ph/ ) Scott Aaronson, UC Berkeley QC Seminar May 14, 2002.
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
Algebrization: A New Barrier in Complexity Theory
Quantum Double Feature Scott Aaronson (MIT) The Learnability of Quantum States Quantum Software Copy-Protection.
Lower Bounds for Local Search by Quantum Arguments Scott Aaronson (UC Berkeley) August 14, 2003.
An Invitation to Quantum Complexity Theory The Study of What We Cant Do With Computers We Dont Have Scott Aaronson (MIT) QIP08, New Delhi BQP NP- complete.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
Scott Aaronson BQP und PH A tale of two strong-willed complexity classes… A 16-year-old quest to find an oracle that separates them… A solution at lastbut.
Oracles Are Subtle But Not Malicious Scott Aaronson University of Waterloo.
The Equivalence of Sampling and Searching Scott Aaronson MIT.
Scott Aaronson (MIT) BQP and PH A tale of two strong-willed complexity classes… A 16-year-old quest to find an oracle that separates them… A solution at.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
Solving Hard Problems With Light Scott Aaronson (Assoc. Prof., EECS) Joint work with Alex Arkhipov vs.
Scott Aaronson (MIT) Based on joint work with John Watrous (U. Waterloo) BQP PSPACE Quantum Computing With Closed Timelike Curves.
Agnostically Learning Decision Trees Parikshit Gopalan MSR-Silicon Valley, IITB00. Adam Tauman Kalai MSR-New England Adam R. Klivans UT Austin
LEARNIN HE UNIFORM UNDER DISTRIBUTION – Toward DNF – Ryan ODonnell Microsoft Research January, 2006.
Quantum Money from Hidden Subspaces Scott Aaronson and Paul Christiano.
DNF Sparsification and Counting Raghu Meka (IAS, Princeton) Parikshit Gopalan (MSR, SVC) Omer Reingold (MSR, SVC)
An Efficient Membership-Query Algorithm for Learning DNF with Respect to the Uniform Distribution Jeffrey C. Jackson Presented By: Eitan Yaakobi Tamar.
Learning Juntas Elchanan Mossel UC Berkeley Ryan O’Donnell MIT Rocco Servedio Harvard.
Scott Aaronson (MIT) Forrelation A problem admitting enormous quantum speedup, which I and others have studied under various names over the years, which.
Department of Computer Science & Engineering University of Washington
On Uniform Amplification of Hardness in NP Luca Trevisan STOC 05 Paper Review Present by Hai Xu.
Arithmetic Hardness vs. Randomness Valentine Kabanets SFU.
Scott Aaronson (MIT) Andris Ambainis (U. of Latvia) Forrelation: A Problem that Optimally Separates Quantum from Classical Computing H H H H H H f |0 
Dana Moshkovitz, MIT Joint work with Subhash Khot, NYU.
Approximation Algorithms for Stochastic Combinatorial Optimization Part I: Multistage problems Anupam Gupta Carnegie Mellon University.
Quantum Computing MAS 725 Hartmut Klauck NTU TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A.
Algorithms Artur Ekert. Our golden sequence H H Circuit complexity n QUBITS B A A B B B B A # of gates (n) = size of the circuit (n) # of parallel units.
Quantum Computing MAS 725 Hartmut Klauck NTU
Quantum Computing MAS 725 Hartmut Klauck NTU
Quantum Algorithms & Complexity
Quantum algorithms vs. polynomials and the maximum quantum-classical gap in the query model.
Scott Aaronson (MIT) ThinkQ conference, IBM, Dec. 2, 2015 The Largest Possible Quantum Speedups H H H H H H f |0  g H H H.
Exact quantum algorithms Andris Ambainis University of Latvia.
Quantum Computing MAS 725 Hartmut Klauck NTU
Forrelation: A Problem that Optimally Separates Quantum from Classical Computing.
Quantum algorithms are at most polynomially faster for any symmetric function Andris Ambainis University of Latvia.
Quantum Computation Stephen Jordan. Church-Turing Thesis ● Weak Form: Anything we would regard as “computable” can be computed by a Turing machine. ●
Quantum Algorithms Oracles
Information Complexity Lower Bounds
Dana Ron Tel Aviv University
Scott Aaronson (MIT) QIP08, New Delhi
Vitaly Feldman and Jan Vondrâk IBM Research - Almaden
A new characterization of ACC0 and probabilistic CC0
Circuit Lower Bounds A combinatorial approach to P vs NP
Tight Fourier Tails for AC0 Circuits
Learning, testing, and approximating halfspaces
Switching Lemmas and Proof Complexity
Oracle Separation of BQP and PH
On Derandomizing Algorithms that Err Extremely Rarely
Oracle Separation of BQP and PH
Presentation transcript:

How to Solve Longstanding Open Problems In Quantum Computing Using Only Fourier Analysis Scott Aaronson (MIT) For those who hate quantum: The open problems will be in off-white boxes like this one

Problem 1: BQP PH? Open since Bernstein-Vazirani 1993 Natural conjecture would be that BQP PH. But we dont even have an oracle separation In fact, we dont even have an oracle A such that BQP A AM A. (Best is BQP A MA A ) Furthermore, until recently our only candidate problem was a monstrosity (Recursive Fourier Sampling)

New Candidate Problem: Fourier Checking Given: Oracle access to functions f,g:{-1,1} n Promised: Either (i)All f(x) and g(x) values are drawn independently from the Gaussian distribution N(0,1), or (ii)The f(x)s are drawn independently from N(0,1), and g=FT(f) is the Fourier transform of f over Z 2 n Problem: Decide which, with constant bias. Claim: Fourier Checking is in BQP Conjecture: Fourier Checking is not in PH

As usual, the problem boils down to showing Fourier Checking has no AC 0 circuit of size 2 poly(n) Alas, all known techniques for constant-depth circuit lower bounds (random restriction, Razborov-Smolensky, Nisan-Wigderson…) fail for interesting reasons! Conjecture (Linial-Nisan 1989): Polylog-wise independence fools AC 0 [recently proved by Bazzi for DNFs!] What I want: The Generalized Linial-Nisan Conjecture. Namely, no distribution D over {0,1} N such that for all conjunctions C of polylog(N) literals, can be distinguished from uniform (with (1) bias) in AC 0

Problem 2: The Need for Structure in Quantum Speedups Beals et al 1998: Quantum and classical decision tree complexities are polynomially related for all total Boolean functions f: D(f)=O(Q(f) 6 ) But could a quantum computer evaluate an almost- total function with exponentially fewer queries? Suggests that if you want an exponential quantum speedup, then you need to exploit some structure in the oracle being queried (e.g. periodicity in the case of Shors factoring algorithm)

Conjecture: Let Q be a T-query quantum algorithm. Then a classical randomized algorithm that makes T O(1) queries can approximate Qs acceptance probability on most inputs x {0,1} n. Would suffice to prove that every low-degree bounded polynomial has an influential variable: Let p:{-1,1} n [-1,1] be a real polynomial of degree d. Suppose Let Then there exists an i such that Inf i 1/poly(d). Conjecture 2: If P=P #P, then P A =BQP A with probability 1 for a random oracle A. [insert avg, i.o. to taste]

What We Know Dinur, Friedgut, Kindler, ODonnell 2006: Every degree-d polynomial p:{-1,1} n [-1,1] with (1) variance has a variable with influence at least 1/exp(d). (Indeed, p is close to an exp(d)-junta.) ODonnell, Saks, Schramm, Servedio 2005: Every classical decision tree of depth d has a variable with influence (1/d).

Can we find a fixed f (depending only on the input length n), such that computing given y as input is #P-complete? Problem 3: Quantum Algorithm for a #P-complete Problem?!? Let f:{0,1} n {0,1} be efficiently computable. Then a simple quantum algorithm outputs each y {0,1} n with probability If even estimating is #P-complete on average, then FBPP=FBQP P #P =AM.

Open Problems