Scott Aaronson Institut pour l'Étude Avançée Le Principe de la Postselection.

Slides:



Advertisements
Similar presentations
Closed Timelike Curves Make Quantum and Classical Computing Equivalent
Advertisements

Quantum Lower Bounds You probably Havent Seen Before (which doesnt imply that you dont know OF them) Scott Aaronson, UC Berkeley 9/24/2002.
A Theory of Isolatability Scott Aaronson Andrew Drucker MIT.
How Much Information Is In Entangled Quantum States? Scott Aaronson MIT |
The Learnability of Quantum States Scott Aaronson University of Waterloo.
Are Quantum States Exponentially Long Vectors? Scott Aaronson (who did and will have an affiliation) (did: IASwill: Waterloo) Distributions over n-bit.
Quantum Versus Classical Proofs and Advice Scott Aaronson Waterloo MIT Greg Kuperberg UC Davis | x {0,1} n ?
Quantum Software Copy-Protection Scott Aaronson (MIT) |
The Future (and Past) of Quantum Lower Bounds by Polynomials Scott Aaronson UC Berkeley.
The Learnability of Quantum States Scott Aaronson University of Waterloo.
How Much Information Is In A Quantum State?
The Power of Quantum Advice Scott Aaronson Andrew Drucker.
Lower Bounds for Local Search by Quantum Arguments Scott Aaronson.
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
How Much Information Is In A Quantum State? Scott Aaronson MIT |
Quantum Double Feature Scott Aaronson (MIT) The Learnability of Quantum States Quantum Software Copy-Protection.
Lower Bounds for Local Search by Quantum Arguments Scott Aaronson (UC Berkeley) August 14, 2003.
An Invitation to Quantum Complexity Theory The Study of What We Cant Do With Computers We Dont Have Scott Aaronson (MIT) QIP08, New Delhi BQP NP- complete.
BQP/qpoly EXP/poly Scott Aaronson UC Berkeley. BQP/qpoly Class of languages recognized by a bounded-error polytime quantum algorithm, with a polysize.
A Full Characterization of Quantum Advice Scott Aaronson Andrew Drucker.
Pretty-Good Tomography Scott Aaronson MIT. Theres a problem… To do tomography on an entangled state of n qubits, we need exp(n) measurements Does this.
Scott Aaronson BQP und PH A tale of two strong-willed complexity classes… A 16-year-old quest to find an oracle that separates them… A solution at lastbut.
Oracles Are Subtle But Not Malicious Scott Aaronson (no affiliation)
QMA/qpoly PSPACE/poly: De-Merlinizing Quantum Protocols Scott Aaronson University of Waterloo.
Oracles Are Subtle But Not Malicious Scott Aaronson University of Waterloo.
The Equivalence of Sampling and Searching Scott Aaronson MIT.
The Computational Complexity of Linear Optics Scott Aaronson and Alex Arkhipov MIT vs.
When Qubits Go Analog A Relatively Easy Problem in Quantum Information Theory Scott Aaronson (MIT)
Scott Aaronson (MIT) BQP and PH A tale of two strong-willed complexity classes… A 16-year-old quest to find an oracle that separates them… A solution at.
Solving Hard Problems With Light Scott Aaronson (Assoc. Prof., EECS) Joint work with Alex Arkhipov vs.
Scott Aaronson (MIT) Based on joint work with John Watrous (U. Waterloo) BQP PSPACE Quantum Computing With Closed Timelike Curves.
Complexity Theory Lecture 6
INHERENT LIMITATIONS OF COMPUTER PROGRAMS CSci 4011.
Foundations of Cryptography Lecture 2: One-way functions are essential for identification. Amplification: from weak to strong one-way function Lecturer:
Circuit and Communication Complexity. Karchmer – Wigderson Games Given The communication game G f : Alice getss.t. f(x)=1 Bob getss.t. f(y)=0 Goal: Find.
Quantum Information and the PCP Theorem Ran Raz Weizmann Institute.
Scott Aaronson (MIT) Forrelation A problem admitting enormous quantum speedup, which I and others have studied under various names over the years, which.
Complexity class NP Is the class of languages that can be verified by a polynomial-time algorithm. L = { x in {0,1}* | there exists a certificate y with.
Complexity 15-1 Complexity Andrei Bulatov Hierarchy Theorem.
1 Undecidability Andreas Klappenecker [based on slides by Prof. Welch]
Complexity 13-1 Complexity Andrei Bulatov Hierarchy Theorem.
Complexity 18-1 Complexity Andrei Bulatov Probabilistic Algorithms.
1 Introduction to Computability Theory Lecture12: Reductions Prof. Amos Israeli.
1 Introduction to Computability Theory Lecture13: Mapping Reductions Prof. Amos Israeli.
CPSC 411, Fall 2008: Set 12 1 CPSC 411 Design and Analysis of Algorithms Set 12: Undecidability Prof. Jennifer Welch Fall 2008.
1 Undecidability Andreas Klappenecker [based on slides by Prof. Welch]
Randomized Computation Roni Parshani Orly Margalit Eran Mantzur Avi Mintz
On Uniform Amplification of Hardness in NP Luca Trevisan STOC 05 Paper Review Present by Hai Xu.
1 Polynomial Time Reductions Polynomial Computable function : For any computes in polynomial time.
Computability and Complexity 20-1 Computability and Complexity Andrei Bulatov Class NL.
RELATIVIZATION CSE860 Vaishali Athale. Overview Introduction Idea behind “Relativization” Concept of “Oracle” Review of Diagonalization Proof Limits of.
Quantum Computing Joseph Stelmach.
Complexity ©D. Moshkovitz 1 And Randomized Computations The Polynomial Hierarchy.
1 Quantum NP Dorit Aharonov & Tomer Naveh Presented by Alex Rapaport.
Approximation Algorithms Pages ADVANCED TOPICS IN COMPLEXITY THEORY.
Computational Complexity Theory Lecture 2: Reductions, NP-completeness, Cook-Levin theorem Indian Institute of Science.
Computation Model and Complexity Class. 2 An algorithmic process that uses the result of a random draw to make an approximated decision has the ability.
. CLASSES RP AND ZPP By: SARIKA PAMMI. CONTENTS:  INTRODUCTION  RP  FACTS ABOUT RP  MONTE CARLO ALGORITHM  CO-RP  ZPP  FACTS ABOUT ZPP  RELATION.
PROBABILISTIC COMPUTATION By Remanth Dabbati. INDEX  Probabilistic Turing Machine  Probabilistic Complexity Classes  Probabilistic Algorithms.
Umans Complexity Theory Lectures Lecture 1a: Problems and Languages.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Quantum Computing MAS 725 Hartmut Klauck NTU
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lectures
The NP class. NP-completeness Lecture2. The NP-class The NP class is a class that contains all the problems that can be decided by a Non-Deterministic.
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
CSCE 411 Design and Analysis of Algorithms
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Classical Algorithms from Quantum and Arthur-Merlin Communication Protocols Lijie Chen MIT Ruosong Wang CMU.
CS21 Decidability and Tractability
Quantum Computing Joseph Stelmach.
Presentation transcript:

Scott Aaronson Institut pour l'Étude Avançée Le Principe de la Postselection

Could you ever learn enough about a person to predict his or her future behavior reliably?

Examples Good novels dont just put their characters in random situationsthey repeatedly subject the characters to crucial tests that reveal aspects of their personalities we didnt already know (I guess)

The Karp-Lipton Theorem (1982) Suppose NP-complete problems were solvable in polynomial time, but only nonuniformly that is, with polynomial-size circuits Then we could use those circuits to collapse the Polynomial-Time Hierarchy down to the seocnd level, NP NP This would be almost as shocking as if P=NP! If pigs could whistle, then donkeys could fly

We want to exploit a small circuit for solving NP-complete problems… but all we know is that it exists! Does there exist a circuit C of size n k, such that for all Boolean formulas of size n, C correctly decides whether is satisfiable, and C outputs yes on whatever problem we wanted to solve originally?

But why should we care? CIRCUIT LOWER BOUNDS

Theorem (Kannan 1982): For every k, there exists a language in NP NP that does not have circuits of size n k Proof: Its not hard to show that doesnt have circuits of size n k So either NP doesnt have circuits of size n k, in which case NP NP doesnt either, or NP does have circuits of size n k, in which case and we win again!

Bshouty et al.s Improvement (1994) If a function f:{0,1} n {0,1} has a polynomial- size circuit, then we can find the circuit in ZPP NP, provided we can somehow compute f (ZPP: Zero-Error Probabilistic Polynomial-Time) Idea: Iterative learning. Repeatedly find an input x t such that, among the circuits that correctly compute f on x 1,…,x t-1, at least a 1/3 fraction get x t wrong This process cant continue for long! Corollary: ZPP NP does not have circuits of size n k

But what about quantum anthropic computing?

PostBQP Class of languages decidable by a bounded- error polynomial-time quantum computer, if at any time you can measure a qubit that has a nonzero probability of being |1, and assume the outcome will be |1 I hereby define a new complexity class… (Postselected BQP)

Another Important Animal: PP Class of languages decidable by a nondeterministic poly-time Turing machine that accepts iff the majority of its paths do NP PP P #P =P PP PSPACE P

Theorem (A., 2004): PostBQP = PP Unexpectedly, this theorem turned out to have an implication for classical complexity: the simplest known proof of the Beigel-Reingold-Spielman Theorem, that PP is closed under intersection

Detour The maximally mixed state I n is just the uniform distribution over n-bit strings But a key fact about quantum mechanics is that, given any orthogonal basis of n-qubit quantum states, we could just as well write I n as the uniform distribution over that basis

Quantum Proofs QMA (defined by Kitaev and Watrous) is the quantum version of NP: Does there exist a quantum state | accepted by such-and- such a circuit with high probability? Unlike NP, QMA doesnt seem to be self- reduciblewe dont know how to construct | given an oracle for QMA problems But we can construct | in PostBQP. (Why?)

Quantum Advice BQP/qpoly: Class of languages decidable by polynomial-size, bounded-error quantum circuits, given a polynomial-size quantum advice state | n that depends only on the input length n Mike & Ike: We know that many systems in Nature prefer to sit in highly entangled states of many systems; might it be possible to exploit this preference to obtain extra computational power?

How powerful is quantum advice? Could it let us solve problems that are not even computable given classical advice of similar size?!

Limitations of Quantum Advice NP BQP/qpoly relative to an oracle ( Uses direct product theorem for quantum search) BQP/qpoly PostBQP/poly ( = PP/poly) Closely related: for all (partial or total) Boolean functions f : {0,1} n {0,1} m {0,1},

Alices Classical Advice Bob, suppose you used the maximally mixed state in place of your quantum advice. Then x 1 is the lexicographically first input for which youd output the right answer with probability less than ½. But suppose you succeeded on x 1, and used the resulting reduced state as your advice. Then x 2 is the lexicographically first input after x 1 for which youd output the right answer with probability less than ½... x1x1 x2x2 Given an input x, clearly lets Bob decide in PostBQP whether x L

But how many inputs must Alice specify? We can boost a quantum advice state so that the error probability on any input is at most (say) n ; then Bob can reuse the advice on as many inputs as he likes We can decompose the maximally mixed state on p(n) qubits as the boosted advice plus 2 p(n) -1 orthogonal states Alice needs to specify at most p(n) inputs x 1,x 2,…, since each one cuts Bobs total success probability by at least half, but the probability must be at least ~2 -p(n) by the end

P PP Does Not Have Quantum Circuits of Size n k Does U accept x 0 w.p. ½? If yes, set x 0 L If no, set x 0 L U : Picks a size-n k quantum circuit uniformly at random and runs it x0x0 x1x1 x2x2 x3x3 x4x4 x5x5 Conditioned on deciding x 0 correctly, does U accept x 1 w.p. ½? If yes, set x 1 L If no, set x 1 L Conditioned on deciding x 0 and x 1 correctly, does U accept x 2 w.p. ½? If yes, set x 2 L If no, set x 2 L

For any k, defines a language L that does not have quantum circuits of size n k Why? Intuitively, each iteration cuts the number of potential circuits in half, but there were at most circuits to begin with On the other hand, clearly L P PP Even works for quantum circuits with quantum advice!

Quantum Karp-Lipton Theorem If PP BQP/qpoly, then the counting hierarchyconsisting of etc.collapses to PP Also: PP does not have quantum circuits of size n k PEXP requires quantum circuits of size f(n), where f(f(n)) 2 n

Concluding Thought: What Makes Science Possible? That which we can observe, we can understand That which we can observe, and then observe in a new situation where we cant predict what it will do even given the earlier observation, and so on for a polynomial number of steps, we can understand (provided we can postselect a description consistent with our observations)

To Show PP PostBQP… Given a Boolean function f:{0,1} n {0,1}, let s=|{x : f(x)=1}|. Need to decide if s>2 n-1 Fromwe can easily prepare Goal: Decide if these amplitudes have the same or opposite signs Prepare |0 | + |1 H| for some,. Then postselect on second qubit being |1 Yieldsin first qubit

To Show PP PostBQP… Yieldsin first qubit Suppose s and 2 n -2s are both positive Then by trying / = 2 i for all i {-n,…,n}, well eventually get close to On the other hand, if 2 n -2s is negative, then we wont. QED

Beigel, Reingold, Spielman 1990: PP is closed under intersection Solved a problem that was open for 18 years… Other classical results proved with quantum techniques: Kerenidis & de Wolf, A., Aharonov & Regev, … Observation: PostBQP is trivially closed under intersection PP is too Given L 1,L 2 PostBQP, to decide if x L 1 and x L 2, postselect on both computations succeeding, and accept iff they both accept