Building a simple Climate Model
Some relevant data
A simple Earth Heating rate TETE
A simple Earth Heating rate TETE Albedo Absorbed solar Complete the system diagram
{ INITIALIZATION EQUATIONS } : s Surface_Temperature = 300 : c Albedo =.3 : f Solar_Energy_in = (1-Albedo)*1365/4 : f Cooling = 5.67e-8*Surface_Temperature^4 { RUNTIME EQUATIONS } : s Surface_Temperature(t) = Surface_Temperature(t - dt) + (Solar_Energy_in - Cooling) * dt : f Solar_Energy_in = (1-Albedo)*1365/4 : f Cooling = 5.67e-8*Surface_Temperature^4
What about time delay?
{ INITIALIZATION EQUATIONS } : s Surface_Temperature = 300 : c specific_Heat_Capacity = 4186 : c depth = 100 : c density = 1020 : c Net_Heat_Capacity = specific_Heat_Capacity*depth*density/3.15e7 : c Albedo =.3 : f Solar_Energy_in = (1-Albedo)*1365/4/Net_Heat_Capacity : f Cooling = 5.67e-8*Surface_Temperature^4/Net_Heat_Capacity { RUNTIME EQUATIONS } : s Surface_Temperature(t) = Surface_Temperature(t - dt) + (Solar_Energy_in - Cooling) * dt : c Net_Heat_Capacity = specific_Heat_Capacity*depth*density/3.15e7 : f Solar_Energy_in = (1-Albedo)*1365/4/Net_Heat_Capacity : f Cooling = 5.67e-8*Surface_Temperature^4/Net_Heat_Capacity
The Moon (has no atmosphere nor ocean
The Moon { INITIALIZATION EQUATIONS } : s Surface_Temperature = 300 : c specific_Heat_Capacity = 1000 : c depth =.2 : c density = 3000 : c Net_Heat_Capacity = specific_Heat_Capacity*depth*density/86400 : c So = 1365*sin(2*pi*time/29.5) : c Albedo =.00 ***** This may be Low ****** : f Solar_Energy_in = if(So>0) then (1-Albedo)*So/Net_Heat_Capacity else 0 : f Cooling = 5.67e-8*Surface_Temperature^4/Net_Heat_Capacity { RUNTIME EQUATIONS } : s Surface_Temperature(t) = Surface_Temperature(t - dt) + (Solar_Energy_in - Cooling) * dt : c Net_Heat_Capacity = specific_Heat_Capacity*depth*density/86400 : c So = 1365*sin(2*pi*time/29.5) : f Solar_Energy_in = if(So>0) then (1-Albedo)*So/Net_Heat_Capacity else 0 : f Cooling = 5.67e-8*Surface_Temperature^4/Net_Heat_Capacity
The Moon