Solving Hard Problems With Light Scott Aaronson (Assoc. Prof., EECS) Joint work with Alex Arkhipov vs.

Slides:



Advertisements
Similar presentations
Scott Aaronson Alex Arkhipov MIT
Advertisements

BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.
How Much Information Is In Entangled Quantum States? Scott Aaronson MIT |
The Learnability of Quantum States Scott Aaronson University of Waterloo.
Quantum Versus Classical Proofs and Advice Scott Aaronson Waterloo MIT Greg Kuperberg UC Davis | x {0,1} n ?
Hawking Quantum Wares at the Classical Complexity Bazaar Scott Aaronson (MIT)
)New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers( סקוט אהרונסון )Scott Aaronson( MIT עדויות חדשות שקשה לדמות את מכניקת הקוונטים
Quantum Computing and Dynamical Quantum Models ( quant-ph/ ) Scott Aaronson, UC Berkeley QC Seminar May 14, 2002.
How Much Information Is In A Quantum State? Scott Aaronson MIT |
Quantum Double Feature Scott Aaronson (MIT) The Learnability of Quantum States Quantum Software Copy-Protection.
An Invitation to Quantum Complexity Theory The Study of What We Cant Do With Computers We Dont Have Scott Aaronson (MIT) QIP08, New Delhi BQP NP- complete.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
Pretty-Good Tomography Scott Aaronson MIT. Theres a problem… To do tomography on an entangled state of n qubits, we need exp(n) measurements Does this.
How to Solve Longstanding Open Problems In Quantum Computing Using Only Fourier Analysis Scott Aaronson (MIT) For those who hate quantum: The open problems.
Scott Aaronson Institut pour l'Étude Avançée Le Principe de la Postselection.
The Equivalence of Sampling and Searching Scott Aaronson MIT.
The Computational Complexity of Linear Optics Scott Aaronson and Alex Arkhipov MIT vs.
Scott Aaronson (MIT) BQP and PH A tale of two strong-willed complexity classes… A 16-year-old quest to find an oracle that separates them… A solution at.
Quantum Computing with Noninteracting Bosons
From EPR to BQP Quantum Computing as 21 st -Century Bell Inequality Violation Scott Aaronson (MIT)
New Computational Insights from Quantum Optics Scott Aaronson.
Scott Aaronson Associate Professor, EECS Quantum Computers and Beyond.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson (MIT) Joint work with Alex Arkhipov.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
The Computational Complexity of Linear Optics Scott Aaronson (MIT) Joint work with Alex Arkhipov vs.
Quantum Computing and the Limits of the Efficiently Computable
Scott Aaronson (MIT) Based on joint work with John Watrous (U. Waterloo) BQP PSPACE Quantum Computing With Closed Timelike Curves.
Scott Aaronson (MIT) The Limits of Computation: Quantum Computers and Beyond.
New Computational Insights from Quantum Optics Scott Aaronson Based on joint work with Alex Arkhipov.
University of Queensland
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Space complexity [AB 4]. 2 Input/Work/Output TM Output.
THE QUANTUM COMPLEXITY OF TIME TRAVEL Scott Aaronson (MIT)
Scott Aaronson (MIT) Forrelation A problem admitting enormous quantum speedup, which I and others have studied under various names over the years, which.
1 Quantum Computing: What’s It Good For? Scott Aaronson Computer Science Department, UC Berkeley January 10,  John.
Anuj Dawar.
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
Quantum Computing Lecture 1 Michele Mosca. l Course Outline
Space complexity [AB 4]. 2 Input/Work/Output TM Output.
Exploring the Limits of the Efficiently Computable Research Directions I Like In Complexity and Physics Scott Aaronson (MIT) Papers and slides at
One Complexity Theorist’s View of Quantum Computing Lance Fortnow NEC Research Institute.
The Road to Quantum Computing: Boson Sampling Nate Kinsey ECE 695 Quantum Photonics Spring 2014.
Quantum Factoring Michele Mosca The Fifth Canadian Summer School on Quantum Information August 3, 2005.
BosonSampling Scott Aaronson (MIT) ICMP 2015, Santiago, Chile Based mostly on joint work with Alex Arkhipov.
Quantum Computing MAS 725 Hartmut Klauck NTU
Umans Complexity Theory Lectures Lecture 1a: Problems and Languages.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Lecture.
Barriers in Quantum Computing (And How to Smash Them Through Closer Interactions Between Classical and Quantum CS) Day Classical complexity theorists,
Verification of BosonSampling Devices Scott Aaronson (MIT) Talk at Simons Institute, February 28, 2014.
The Kind of Stuff I Think About Scott Aaronson (MIT) LIDS Lunch, October 29, 2013 Abridged version of plenary talk at NIPS’2012.
Scott Aaronson (MIT  UT Austin) Strachey Lecture, Oxford University May 24, 2016 Quantum Supremacy.
Quantum Computing and the Limits of the Efficiently Computable Scott Aaronson (MIT) Papers & slides at
Scott Aaronson (UT Austin) Banff, September 8, 2016 Joint work with Lijie Chen Complexity-Theoretic Foundations of Quantum Supremacy Experiments QSamp.
Scott Aaronson (MIT) April 30, 2014
Scott Aaronson (UT Austin)
BosonSampling Scott Aaronson (University of Texas, Austin)
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Scott Aaronson (UT Austin)
Scott Aaronson (MIT) QIP08, New Delhi
Scott Aaronson (MITUT Austin)
Scott Aaronson (MIT) Talk at SITP, February 21, 2014
Based on joint work with Alex Arkhipov
Scott Aaronson (UT Austin)
BosonSampling Scott Aaronson (University of Texas, Austin)
Quantum Computing and the Quest for Quantum Computational Supremacy
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Complexity-Theoretic Foundations of Quantum Supremacy Experiments
Scott Aaronson (UT Austin) Papers and slides at
Presentation transcript:

Solving Hard Problems With Light Scott Aaronson (Assoc. Prof., EECS) Joint work with Alex Arkhipov vs

In 1994, something big happened in the foundations of computer science, whose meaning is still debated today… Why exactly was Shors algorithm important? Boosters: Because it means well build QCs! Skeptics: Because it means we wont build QCs! Me: For reasons having nothing to do with building QCs!

Shors algorithm was a hardness result for one of the central computational problems of modern science: Q UANTUM S IMULATION Shors Theorem: Q UANTUM S IMULATION is not solvable efficiently (in polynomial time), unless F ACTORING is also Use of DoE supercomputers by area (from a talk by Alán Aspuru-Guzik)

Advantages: Based on more generic complexity assumptions than the hardness of F ACTORING Gives evidence that QCs have capabilities outside the entire polynomial hierarchy Requires only a very simple kind of quantum computation: nonadaptive linear optics (testable before Im dead?) Today, a different kind of hardness result for simulating quantum mechanics Disadvantages: Applies to relational problems (problems with many possible outputs) or sampling problems, not decision problems Harder to convince a skeptic that your computer is indeed solving the relevant hard problem Less relevant for the NSA

Example of a PH problem: For all n-bit strings x, does there exist an n-bit string y such that for all n-bit strings z, (x,y,z) holds? Bestiary of Complexity Classes Just as they believe P NP, complexity theorists believe that PH is infinite So if you can show such-and-such is true PH collapses to a finite level, its damn good evidence that such-and-such is false BQP P #P BPP P NP PH F ACTORING P ERMANENT C OUNTING 3SAT X Y Z … How complexity theorists say such-and-such is damn unlikely: If such-and-such is true, then PH collapses to a finite level

Suppose the output distribution of any linear-optics circuit can be efficiently sampled by a classical algorithm. Then the polynomial hierarchy collapses. Indeed, even if such a distribution can be sampled by a classical computer with an oracle for the polynomial hierarchy, still the polynomial hierarchy collapses. Suppose two plausible conjectures are true: the permanent of a Gaussian random matrix is (1) #P-hard to approximate, and (2) not too concentrated around 0. Then the output distribution of a linear-optics circuit cant even be approximately sampled efficiently classically, unless the polynomial hierarchy collapses. Our Results If our conjectures hold, then even a noisy linear-optics experiment can sample from a probability distribution that no classical computer can feasibly sample from

BOSONSFERMIONS There are two basic types of particle in the universe… Their transition amplitudes are given respectively by… All I can say is, the bosons got the harder job Particle Physics In One Slide

High-Level Idea Estimating a sum of exponentially many positive or negative numbers: #P-hard Estimating a sum of exponentially many nonnegative numbers: Still hard, but known to be in PH If quantum mechanics could be efficiently simulated classically, then these two problems would become equivalentthereby placing #P in PH, and collapsing PH

So why arent we done? Because real quantum experiments are subject to noise Would an efficient classical algorithm that simulated a noisy optics experiment still collapse the polynomial hierarchy? Main Result: Yes, assuming two plausible conjectures about permanents of random matrices (the PCC and the PGC) U Particular experiment we have in mind: Take a system of n identical photons with m=O(n 2 ) modes. Put each photon in a known mode, then apply a Haar-random m m unitary transformation U: Then measure which modes have 1 or more photon in them

There exists a polynomial p such that for all n, The Permanent Concentration Conjecture (PCC) Empirically true! Also, we can prove it with determinant in place of permanent

Let X be an n n matrix of independent, N(0,1) complex Gaussian entries. Then approximating Per(X) to within a 1/poly(n) multiplicative error, for a 1-1/poly(n) fraction of X, is a #P-hard problem. The Permanent-of-Gaussians Conjecture (PGC)

Experimental Prospects What would it take to implement the requisite experiment? Reliable phase-shifters and beamsplitters, to implement an arbitrary unitary on m photon modes Reliable single-photon sources Photodetector arrays that can reliably distinguish 0 vs. 1 photon But crucially, no nonlinear optics or postselected measurements! Our Proposal: Concentrate on (say) n=20 photons and m=400 modes, so that classical simulation is nontrivial but not impossible

Summary I often say that Shors algorithm presented us with three choices. Either (1)The laws of physics are exponentially hard to simulate on any computer today, (2)Textbook quantum mechanics is false, or (3)Quantum computers are easy to simulate classically. For all intents and purposes?