Undecidability Everything is an Integer Countable and Uncountable Sets

Slides:



Advertisements
Similar presentations
Restricted Machines Presented by Muhannad Harrim.
Advertisements

Turing Machines Memory = an infinitely long tape Persistent storage A read/write tape head that can move around the tape Initially, the tape contains only.
CSCI 4325 / 6339 Theory of Computation Zhixiang Chen Department of Computer Science University of Texas-Pan American.
1 COMP 382: Reasoning about algorithms Unit 9: Undecidability [Slides adapted from Amos Israeli’s]
1 Introduction to Computability Theory Lecture12: Reductions Prof. Amos Israeli.
1 Introduction to Computability Theory Lecture11: Variants of Turing Machines Prof. Amos Israeli.
Courtesy Costas Busch - RPI1 A Universal Turing Machine.
CPSC 411, Fall 2008: Set 12 1 CPSC 411 Design and Analysis of Algorithms Set 12: Undecidability Prof. Jennifer Welch Fall 2008.
1 Linear Bounded Automata LBAs. 2 Linear Bounded Automata are like Turing Machines with a restriction: The working space of the tape is the space of the.
1 Intractable Problems Time-Bounded Turing Machines Classes P and NP Polynomial-Time Reductions.
1 Undecidability Andreas Klappenecker [based on slides by Prof. Welch]
CHAPTER 4 Decidability Contents Decidable Languages
1 Pushdown Automata Definition Moves of the PDA Languages of the PDA Deterministic PDA’s.
1 Decidability Turing Machines Coded as Binary Strings Diagonalizing over Turing Machines Problems as Languages Undecidable Problems.
CS5371 Theory of Computation Lecture 10: Computability Theory I (Turing Machine)
Fall 2004COMP 3351 A Universal Turing Machine. Fall 2004COMP 3352 Turing Machines are “hardwired” they execute only one program A limitation of Turing.
Finite State Machines Data Structures and Algorithms for Information Processing 1.
1 Introduction to Computability Theory Lecture11: The Halting Problem Prof. Amos Israeli.
Properties of Context-Free Languages
Turing Machines Recursive and Recursively Enumerable Languages
 Computability Theory Turing Machines Professor MSc. Ivan A. Escobar
Introduction to CS Theory Lecture 3 – Regular Languages Piotr Faliszewski
MA/CSSE 474 Theory of Computation More Reduction Examples Non-SD Reductions.
Introduction to CS Theory Lecture 15 –Turing Machines Piotr Faliszewski
The Halting Problem – Undecidable Languages Lecture 31 Section 4.2 Wed, Oct 31, 2007.
1 Undecidability Reading: Chapter 8 & 9. 2 Decidability vs. Undecidability There are two types of TMs (based on halting): (Recursive) TMs that always.
1 1 CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 15-1 Mälardalen University 2012.
A Universal Turing Machine
Turing Machines. Intro to Turing Machines A Turing Machine (TM) has finite-state control (like PDA), and an infinite read-write tape. The tape serves.
1 More About Turing Machines “Programming Tricks” Restrictions Extensions Closure Properties.
CSE 311 Foundations of Computing I Lecture 26 Computability: Turing machines, Undecidability of the Halting Problem Spring
1 Linear Bounded Automata LBAs. 2 Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference: The input string tape space is the.
1 Turing’s Thesis. 2 Turing’s thesis: Any computation carried out by mechanical means can be performed by a Turing Machine (1930)
 2005 SDU Lecture13 Reducibility — A methodology for proving un- decidability.
1Computer Sciences Department. Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, by: MICHAEL SIPSER Reference 3Computer Sciences Department.
D E C I D A B I L I T Y 1. 2 Objectives To investigate the power of algorithms to solve problems. To explore the limits of algorithmic solvability. To.
1 Undecidability Everything is an Integer Countable and Uncountable Sets Turing Machines Recursive and Recursively Enumerable Languages.
Introduction to Finite Automata
Lecture 17 Undecidability Topics:  TM variations  Undecidability June 25, 2015 CSCE 355 Foundations of Computation.
Turing Machines Lecture 26 Naveen Z Quazilbash. Overview Introduction Turing Machine Notation Turing Machine Formal Notation Transition Function Instantaneous.
1 Pushdown Automata Definition Moves of the PDA Languages of the PDA Deterministic PDA’s.
1 Turing Machines and Equivalent Models Section 13.1 Turing Machines.
Deterministic Finite Automata
Overview of the theory of computation Episode 3 0 Turing machines The traditional concepts of computability, decidability and recursive enumerability.
Donghyun (David) Kim Department of Mathematics and Computer Science North Carolina Central University 1 Chapter 4 Decidability Some slides are in courtesy.
1 Turing Machines - Chap 8 Turing Machines Recursive and Recursively Enumerable Languages.
Lecture 16b Turing Machines Topics: Closure Properties of Context Free Languages Cocke-Younger-Kasimi Parsing Algorithm June 23, 2015 CSCE 355 Foundations.
Automata & Formal Languages, Feodor F. Dragan, Kent State University 1 CHAPTER 3 The Church-Turing Thesis Contents Turing Machines definitions, examples,
1 Undecidability Andreas Klappenecker [based on slides by Prof. Welch]
1 Chapter 9 Undecidability  Turing Machines Coded as Binary Strings  Universal Turing machine  Diagonalizing over Turing Machines  Problems as Languages.
1 8.4 Extensions to the Basic TM Extended TM’s to be studied: Multitape Turing machine Nondeterministic Turing machine The above extensions make no increase.
Turing Machines CS 130 Theory of Computation HMU Textbook: Chap 8.
Recursively Enumerable and Recursive Languages. Definition: A language is recursively enumerable if some Turing machine accepts it.
1 A Universal Turing Machine. 2 Turing Machines are “hardwired” they execute only one program A limitation of Turing Machines: Real Computers are re-programmable.
Fall 2013 Lecture 27: Turing machines and decidability CSE 311: Foundations of Computing.
The Acceptance Problem for TMs
A Universal Turing Machine
Recursively Enumerable and Recursive Languages
CSE 311 Foundations of Computing I
Turing Machines.
LIMITS OF ALGORITHMIC COMPUTATION
Jaya Krishna, M.Tech, Assistant Professor
Decidable Languages Costas Busch - LSU.
Decidability Turing Machines Coded as Binary Strings
Decidability Turing Machines Coded as Binary Strings
Formal Languages, Automata and Models of Computation
Recall last lecture and Nondeterministic TMs
Subject Name: FORMAL LANGUAGES AND AUTOMATA THEORY
Everything is an Integer Countable and Uncountable Sets
Turing Machines Everything is an Integer
Presentation transcript:

Undecidability Everything is an Integer Countable and Uncountable Sets Turing Machines Recursive and Recursively Enumerable Languages

Integers, Strings, and Other Things Data types have become very important as a programming tool. But at another level, there is only one type, which you may think of as integers or strings. Key point: Strings that are programs are just another way to think about the same one data type.

Example: Text Strings of ASCII or Unicode characters can be thought of as binary strings, with 8 or 16 bits/character. Binary strings can be thought of as integers. It makes sense to talk about “the i-th string.”

Binary Strings to Integers There’s a small glitch: If you think simply of binary integers, then strings like 101, 0101, 00101,… all appear to be “the fifth string.” Fix by prepending a “1” to the string before converting to an integer. Thus, 101, 0101, and 00101 are the 13th, 21st, and 37th strings, respectively.

Example: Images Represent an image in (say) GIF. The GIF file is an ASCII string. Convert string to binary. Convert binary string to integer. Now we have a notion of “the i-th image.”

Example: Proofs A formal proof is a sequence of logical expressions, each of which follows from the ones before it. Encode mathematical expressions of any kind in Unicode. Convert expression to a binary string and then an integer.

Proofs – (2) But a proof is a sequence of expressions, so we need a way to separate them. Also, we need to indicate which expressions are given.

Proofs – (3) Quick-and-dirty way to introduce new symbols into binary strings: Given a binary string, precede each bit by 0. Example: 101 becomes 010001. Use strings of two or more 1’s as the special symbols. Example: 111 = “the following expression is given”; 11 = “end of expression.”

Example: Encoding Proofs 1110100011111100000101110101… A given expression follows An ex- pression End of expression A given expression follows Expression End Notice this 1 could not be part of the “end”

Example: Programs Programs are just another kind of data. Represent a program in ASCII. Convert to a binary string, then to an integer. Thus, it makes sense to talk about “the i-th program.” Hmm…There aren’t all that many programs.

Finite Sets Intuitively, a finite set is a set for which there is a particular integer that is the count of the number of members. Example: {a, b, c} is a finite set; its cardinality is 3. It is impossible to find a 1-1 mapping between a finite set and a proper subset of itself.

Infinite Sets Formally, an infinite set is a set for which there is a 1-1 correspondence between itself and a proper subset of itself. Example: the positive integers {1, 2, 3,…} is an infinite set. There is a 1-1 correspondence 1<->2, 2<->4, 3<->6,… between this set and a proper subset (the set of even integers).

Countable Sets A countable set is a set with a 1-1 correspondence with the positive integers. Hence, all countable sets are infinite. Example: All integers. 0<->1; -i <-> 2i; +i <-> 2i+1. Thus, order is 0, -1, 1, -2, 2, -3, 3,… Examples: set of binary strings, set of Java programs.

Example: Pairs of Integers Order the pairs of positive integers first by sum, then by first component: [1,1], [2,1], [1,2], [3,1], [2,2], [1,3], [4,1], [3,2],…, [1,4], [5,1],… Interesting exercise: figure out the function f(i,j) such that the pair [i,j] corresponds to the integer f(i,j) in this order.

Enumerations An enumeration of a set is a 1-1 correspondence between the set and the positive integers. Thus, we have seen enumerations for strings, programs, proofs, and pairs of integers.

How Many Languages? Are the languages over {0,1}* countable? No; here’s a proof. Suppose we could enumerate all languages over {0,1}* and talk about “the i-th language.” Consider the language L = { w | w is the i-th binary string and w is not in the i-th language}.

Proof – Continued Clearly, L is a language over {0,1}*. Lj Clearly, L is a language over {0,1}*. Thus, it is the j-th language for some particular j. Let x be the j-th string. Is x in L? If so, x is not in L by definition of L. If not, then x is in L by definition of L. x Recall: L = { w | w is the i-th binary string and w is not in the i-th language}. j-th

Diagonalization Picture Strings 1 2 3 4 5 … … 1 1 1 1 2 1 Languages 3 4 1 5 … …

Diagonalization Picture Can’t be a row – it disagrees in an entry of each row. Strings Flip each diagonal entry 1 2 3 4 5 … … 1 1 1 2 Languages 3 1 4 1 5 … …

Proof – Concluded We have a contradiction: x is neither in L nor not in L, so our sole assumption (that there was an enumeration of the languages) is wrong. Comment: This is really bad; there are more languages than programs. E.g., there are languages with no membership algorithm.

Hungarian Arguments We have shown the existence of a language with no algorithm to test for membership, but we have no way to exhibit a particular language with that property. A proof by counting the things that fail and claiming they are fewer than all things is called a Hungarian argument.

Turing-Machine Theory The purpose of the theory of Turing machines is to prove that certain specific languages have no algorithm. Start with a language about Turing machines themselves. Reductions are used to prove more common questions undecidable.

Picture of a Turing Machine Action: based on the state and the tape symbol under the head: change state, rewrite the symbol and move the head one square. State . . . . . . A B C A D Infinite tape with squares containing tape symbols chosen from a finite alphabet

Why Turing Machines? Why not deal with C programs or something like that? Answer: You can, but it is easier to prove things about TM’s, because they are so simple. And yet they are as powerful as any computer. More so, in fact, since they have infinite memory.

Then Why Not Finite-State Machines to Model Computers? In principle, you could, but it is not instructive. Programming models don’t build in a limit on memory. In practice, you can go to Fry’s and buy another disk. But finite automata vital at the chip level (model-checking).

Turing-Machine Formalism A TM is described by: A finite set of states (Q, typically). An input alphabet (Σ, typically). A tape alphabet (Γ, typically; contains Σ). A transition function (δ, typically). A start state (q0, in Q, typically). A blank symbol (B, in Γ- Σ, typically). All tape except for the input is blank initially. A set of final states (F ⊆ Q, typically).

Conventions a, b, … are input symbols. …, X, Y, Z are tape symbols. …, w, x, y, z are strings of input symbols. , ,… are strings of tape symbols.

The Transition Function Takes two arguments: A state, in Q. A tape symbol in Γ. δ(q, Z) is either undefined or a triple of the form (p, Y, D). p is a state. Y is the new tape symbol. D is a direction, L or R.

Actions of the PDA If δ(q, Z) = (p, Y, D) then, in state q, scanning Z under its tape head, the TM: Changes the state to p. Replaces Z by Y on the tape. Moves the head one square in direction D. D = L: move left; D = R; move right.

Example: Turing Machine This TM scans its input right, looking for a 1. If it finds one, it changes it to a 0, goes to final state f, and halts. If it reaches a blank, it changes it to a 1 and moves left.

Example: Turing Machine – (2) States = {q (start), f (final)}. Input symbols = {0, 1}. Tape symbols = {0, 1, B}. δ(q, 0) = (q, 0, R). δ(q, 1) = (f, 0, R). δ(q, B) = (q, 1, L).

Simulation of TM δ(q, 0) = (q, 0, R) δ(q, 1) = (f, 0, R) δ(q, B) = (q, 1, L) q . . . B B 0 0 B B . . .

Simulation of TM δ(q, 0) = (q, 0, R) δ(q, 1) = (f, 0, R) δ(q, B) = (q, 1, L) q . . . B B 0 0 B B . . .

Simulation of TM δ(q, 0) = (q, 0, R) δ(q, 1) = (f, 0, R) δ(q, B) = (q, 1, L) q . . . B B 0 0 B B . . .

Simulation of TM δ(q, 0) = (q, 0, R) δ(q, 1) = (f, 0, R) δ(q, B) = (q, 1, L) q . . . B B 0 0 1 B . . .

Simulation of TM δ(q, 0) = (q, 0, R) δ(q, 1) = (f, 0, R) δ(q, B) = (q, 1, L) q . . . B B 0 0 1 B . . .

Simulation of TM δ(q, 0) = (q, 0, R) δ(q, 1) = (f, 0, R) δ(q, B) = (q, 1, L) f No move is possible. The TM halts and accepts. . . . B B 0 0 0 B . . .

Instantaneous Descriptions of a Turing Machine Initially, a TM has a tape consisting of a string of input symbols surrounded by an infinity of blanks in both directions. The TM is in the start state, and the head is at the leftmost input symbol.

TM ID’s – (2) An ID is a string q, where  is the tape between the leftmost and rightmost nonblanks (inclusive). The state q is immediately to the left of the tape symbol scanned. If q is at the right end, it is scanning B. If q is scanning a B at the left end, then consecutive B’s at and to the right of q are part of .

TM ID’s – (3) As for PDA’s we may use symbols ⊦ and ⊦* to represent “becomes in one move” and “becomes in zero or more moves,” respectively, on ID’s. Example: The moves of the previous TM are q00⊦0q0⊦00q⊦0q01⊦00q1⊦000f

Formal Definition of Moves If δ(q, Z) = (p, Y, R), then qZ⊦Yp If Z is the blank B, then also q⊦Yp If δ(q, Z) = (p, Y, L), then For any X, XqZ⊦pXY In addition, qZ⊦pBY

Languages of a TM A TM defines a language by final state, as usual. L(M) = {w | q0w⊦*I, where I is an ID with a final state}. Or, a TM can accept a language by halting. H(M) = {w | q0w⊦*I, and there is no move possible from ID I}.

Equivalence of Accepting and Halting If L = L(M), then there is a TM M’ such that L = H(M’). If L = H(M), then there is a TM M” such that L = L(M”).

Proof of 1: Acceptance -> Halting Modify M to become M’ as follows: For each accepting state of M, remove any moves, so M’ halts in that state. Avoid having M’ accidentally halt. Introduce a new state s, which runs to the right forever; that is δ(s, X) = (s, X, R) for all symbols X. If q is not accepting, and δ(q, X) is undefined, let δ(q, X) = (s, X, R).

Proof of 2: Halting -> Acceptance Modify M to become M” as follows: Introduce a new state f, the only accepting state of M”. f has no moves. If δ(q, X) is undefined for any state q and symbol X, define it by δ(q, X) = (f, X, R).

Recursively Enumerable Languages We now see that the classes of languages defined by TM’s using final state and halting are the same. This class of languages is called the recursively enumerable languages. Why? The term actually predates the Turing machine and refers to another notion of computation of functions.

Recursive Languages An algorithm is a TM that is guaranteed to halt whether or not it accepts. If L = L(M) for some TM M that is an algorithm, we say L is a recursive language. Why? Again, don’t ask; it is a term with a history.

Example: Recursive Languages Every CFL is a recursive language. Use the CYK algorithm. Every regular language is a CFL (think of its DFA as a PDA that ignores its stack); therefore every regular language is recursive. Almost anything you can think of is recursive.