David Luebke 1 9/10/2015 CS 332: Algorithms Single-Source Shortest Path.

Slides:



Advertisements
Similar presentations
Advanced Algorithm Design and Analysis Jiaheng Lu Renmin University of China
Advertisements

October 31, Algorithms and Data Structures Lecture XIII Simonas Šaltenis Nykredit Center for Database Research Aalborg University
November 14, Algorithms and Data Structures Lecture XIII Simonas Šaltenis Aalborg University
Introduction to Algorithms 6.046J/18.401J/SMA5503
Data Structures, Spring 2004 © L. Joskowicz 1 Data Structures – LECTURE 13 Minumum spanning trees Motivation Properties of minimum spanning trees Kruskal’s.
Lecture 20: Shortest Paths Shang-Hua Teng. Weighted Directed Graphs Weight on edges for distance
Jim Anderson Comp 122, Fall 2003 Single-source SPs - 1 Chapter 24: Single-Source Shortest Paths Given: A single source vertex in a weighted, directed graph.
Shortest Paths Definitions Single Source Algorithms –Bellman Ford –DAG shortest path algorithm –Dijkstra All Pairs Algorithms –Using Single Source Algorithms.
1 7-MST Minimal Spanning Trees Fonts: MTExtra:  (comment) Symbol:  Wingdings: Fonts: MTExtra:  (comment) Symbol:  Wingdings:
Lecture 18: Minimum Spanning Trees Shang-Hua Teng.
1 8-ShortestPaths Shortest Paths in a Graph Fundamental Algorithms.
Shortest Paths Definitions Single Source Algorithms
CSE 780 Algorithms Advanced Algorithms SSSP Dijkstra’s algorithm SSSP in DAGs.
1 Graph Algorithms Single source shortest paths problem Dana Shapira.
SINGLE-SOURCE SHORTEST PATHS. Shortest Path Problems Directed weighted graph. Path length is sum of weights of edges on path. The vertex at which the.
Theory of Computing Lecture 7 MAS 714 Hartmut Klauck.
Topological Sorting and Least-cost Path Algorithms.
Shortest Path Algorithms. Kruskal’s Algorithm We construct a set of edges A satisfying the following invariant:  A is a subset of some MST We start with.
Design and Analysis of Computer Algorithm September 10, Design and Analysis of Computer Algorithm Lecture 5-2 Pradondet Nilagupta Department of Computer.
David Luebke 1 9/10/2015 ITCS 6114 Single-Source Shortest Path.
David Luebke 1 9/13/2015 CS 332: Algorithms S-S Shortest Path: Dijkstra’s Algorithm Disjoint-Set Union Amortized Analysis.
Jim Anderson Comp 122, Fall 2003 Single-source SPs - 1 Chapter 24: Single-Source Shortest Paths Given: A single source vertex in a weighted, directed graph.
David Luebke 1 9/15/2015 CS 332: Algorithms Topological Sort Minimum Spanning Trees.
MST Many of the slides are from Prof. Plaisted’s resources at University of North Carolina at Chapel Hill.
David Luebke 1 10/1/2015 CS 332: Algorithms Topological Sort Minimum Spanning Tree.
2IL05 Data Structures Fall 2007 Lecture 13: Minimum Spanning Trees.
Spring 2015 Lecture 11: Minimum Spanning Trees
1 Minimum Spanning Trees. Minimum- Spanning Trees 1. Concrete example: computer connection 2. Definition of a Minimum- Spanning Tree.
1 Greedy Algorithms and MST Dr. Ying Lu RAIK 283 Data Structures & Algorithms.
Chapter 24: Single-Source Shortest Paths Given: A single source vertex in a weighted, directed graph. Want to compute a shortest path for each possible.
David Luebke 1 12/12/2015 CS 332: Algorithms Amortized Analysis.
Chapter 23: Minimum Spanning Trees: A graph optimization problem Given undirected graph G(V,E) and a weight function w(u,v) defined on all edges (u,v)
1 Introduction to Algorithms L ECTURE 17 (Chap. 24) Shortest paths I 24.2 Single-source shortest paths 24.3 Dijkstra’s algorithm Edsger Wybe Dijkstra
Lecture 13 Algorithm Analysis
Greedy Algorithms Z. GuoUNC Chapel Hill CLRS CH. 16, 23, & 24.
1 2/23/2016 ITCS 6114 Topological Sort Minimum Spanning Trees.
David Luebke 1 3/1/2016 CS 332: Algorithms Dijkstra’s Algorithm Disjoint-Set Union.
Single Source Shortest Paths Chapter 24 CSc 4520/6520 Fall 2013 Slides adapted from George Bebis, University of Reno, Nevada.
MST Lemma Let G = (V, E) be a connected, undirected graph with real-value weights on the edges. Let A be a viable subset of E (i.e. a subset of some MST),
Algorithm Design and Analysis June 11, Algorithm Design and Analysis Pradondet Nilagupta Department of Computer Engineering This lecture note.
Single-Source Shortest Paths (25/24) HW: 25-2 and 25-3 p. 546/24-2 and 24-3 p.615 Given a graph G=(V,E) and w: E   weight of is w(p) =  w(v[i],v[i+1])
November 22, Algorithms and Data Structures Lecture XII Simonas Šaltenis Nykredit Center for Database Research Aalborg University
David Luebke 1 11/21/2016 CS 332: Algorithms Minimum Spanning Tree Shortest Paths.
Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that are: feasible locally optimal irrevocable.
Algorithms and Data Structures Lecture XIII
CS 3343: Analysis of Algorithms
Minimum Spanning Trees
Minimum Spanning Tree Shortest Paths
CSC 413/513: Intro to Algorithms
CS200: Algorithm Analysis
Minimum Spanning Trees
Many slides here are based on E. Demaine , D. Luebke slides
Many slides here are based on D. Luebke slides
CS 332: Algorithms Dijkstra’s Algorithm Continued Disjoint-Set Union
CS6045: Advanced Algorithms
Algorithms and Data Structures Lecture XII
Algorithms and Data Structures Lecture XIII
Lecture 13 Algorithm Analysis
Lecture 13 Algorithm Analysis
CSC 413/513: Intro to Algorithms
Lecture 13 Algorithm Analysis
Lecture 13 Algorithm Analysis
CS 332: Algorithms Amortized Analysis Continued
Minimum Spanning Trees
Algorithms Searching in a Graph.
Minimum spanning tree Shortest path algorithms
CS 3013: DS & Algorithms Shortest Paths.
Review of MST Algorithms Disjoint-Set Union Amortized Analysis
Presentation transcript:

David Luebke 1 9/10/2015 CS 332: Algorithms Single-Source Shortest Path

David Luebke 2 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v);

David Luebke 3 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); Run on example graph

David Luebke 4 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v);     Run on example graph

David Luebke 5 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v);  0    Pick a start vertex r r

David Luebke 6 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v);  0    Red vertices have been removed from Q u

David Luebke 7 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v);  0  3  Red arrows indicate parent pointers u

David Luebke 8 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 14  0  3  u

David Luebke 9 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 14  0  3  u

David Luebke 10 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 14  08  3  u

David Luebke 11 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 10  08  3  u

David Luebke 12 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 10  08  3  u

David Luebke 13 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 102  08  3  u

David Luebke 14 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 102   u

David Luebke 15 9/10/2015 Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); 102   u

David Luebke 16 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v);  u

David Luebke 17 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); u

David Luebke 18 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); u

David Luebke 19 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); u

David Luebke 20 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); u

David Luebke 21 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); u

David Luebke 22 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); u

David Luebke 23 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); What is the hidden cost in this code?

David Luebke 24 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; DecreaseKey(v, w(u,v));

David Luebke 25 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; DecreaseKey(v, w(u,v)); How often is ExtractMin() called? How often is DecreaseKey() called?

David Luebke 26 9/10/2015 Review: Prim’s Algorithm MST-Prim(G, w, r) Q = V[G]; for each u  Q key[u] =  ; key[r] = 0; p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v  Adj[u] if (v  Q and w(u,v) < key[v]) p[v] = u; key[v] = w(u,v); What will be the running time? A: Depends on queue binary heap: O(E lg V) Fibonacci heap: O(V lg V + E)

David Luebke 27 9/10/2015 Single-Source Shortest Path ● Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v ■ “Shortest-path” = minimum weight ■ Weight of path is sum of edges ■ E.g., a road map: what is the shortest path from Chapel Hill to Charlottesville?

David Luebke 28 9/10/2015 Shortest Path Properties ● Again, we have optimal substructure: the shortest path consists of shortest subpaths: ■ Proof: suppose some subpath is not a shortest path ○ There must then exist a shorter subpath ○ Could substitute the shorter subpath for a shorter path ○ But then overall path is not shortest path. Contradiction

David Luebke 29 9/10/2015 Shortest Path Properties ● Define  (u,v) to be the weight of the shortest path from u to v ● Shortest paths satisfy the triangle inequality:  (u,v)   (u,x) +  (x,v) ● “Proof”: x u v This path is no longer than any other path

David Luebke 30 9/10/2015 Shortest Path Properties ● In graphs with negative weight cycles, some shortest paths will not exist (Why?): < 0

David Luebke 31 9/10/2015 Relaxation ● A key technique in shortest path algorithms is relaxation ■ Idea: for all v, maintain upper bound d[v] on  (s,v) Relax(u,v,w) { if (d[v] > d[u]+w) then d[v]=d[u]+w; } Relax

David Luebke 32 9/10/2015 Bellman-Ford Algorithm BellmanFord() for each v  V d[v] =  ; d[s] = 0; for i=1 to |V|-1 for each edge (u,v)  E Relax(u,v, w(u,v)); for each edge (u,v)  E if (d[v] > d[u] + w(u,v)) return “no solution”; Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w Initialize d[], which will converge to shortest-path value  Relaxation: Make |V|-1 passes, relaxing each edge Test for solution Under what condition do we get a solution?

David Luebke 33 9/10/2015 Bellman-Ford Algorithm BellmanFord() for each v  V d[v] =  ; d[s] = 0; for i=1 to |V|-1 for each edge (u,v)  E Relax(u,v, w(u,v)); for each edge (u,v)  E if (d[v] > d[u] + w(u,v)) return “no solution”; Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w What will be the running time?

David Luebke 34 9/10/2015 Bellman-Ford Algorithm BellmanFord() for each v  V d[v] =  ; d[s] = 0; for i=1 to |V|-1 for each edge (u,v)  E Relax(u,v, w(u,v)); for each edge (u,v)  E if (d[v] > d[u] + w(u,v)) return “no solution”; Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w What will be the running time? A: O(VE)

David Luebke 35 9/10/2015 Bellman-Ford Algorithm BellmanFord() for each v  V d[v] =  ; d[s] = 0; for i=1 to |V|-1 for each edge (u,v)  E Relax(u,v, w(u,v)); for each edge (u,v)  E if (d[v] > d[u] + w(u,v)) return “no solution”; Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w B E DC A Ex: work on board s

David Luebke 36 9/10/2015 Bellman-Ford ● Note that order in which edges are processed affects how quickly it converges ● Correctness: show d[v] =  (s,v) after |V|-1 passes ■ Lemma: d[v]   (s,v) always ○ Initially true ○ Let v be first vertex for which d[v] <  (s,v) ○ Let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u,v) ○ Then d[v]<  (s,v)  (s,v)   (s,u) + w(u,v)(Why?)  (s,u) + w(u,v)  d[u] + w(u,v)(Why?) ○ So d[v] < d[u] + w(u,v). Contradiction.

David Luebke 37 9/10/2015 Bellman-Ford ● Prove: after |V|-1 passes, all d values correct ■ Consider shortest path from s to v: s  v 1  v 2  v 3  v 4  v ○ Initially, d[s] = 0 is correct, and doesn’t change (Why?) ○ After 1 pass through edges, d[v 1 ] is correct (Why?) and doesn’t change ○ After 2 passes, d[v 2 ] is correct and doesn’t change ○ … ○ Terminates in |V| - 1 passes: (Why?) ○ What if it doesn’t?

David Luebke 38 9/10/2015 DAG Shortest Paths ● Problem: finding shortest paths in DAG ■ Bellman-Ford takes O(VE) time. ■ How can we do better? ■ Idea: use topological sort ○ If were lucky and processes vertices on each shortest path from left to right, would be done in one pass ○ Every path in a dag is subsequence of topologically sorted vertex order, so processing verts in that order, we will do each path in forward order (will never relax edges out of vert before doing all edges into vert). ○ Thus: just one pass. What will be the running time?

David Luebke 39 9/10/2015 Dijkstra’s Algorithm ● If no negative edge weights, we can beat BF ● Similar to breadth-first search ■ Grow a tree gradually, advancing from vertices taken from a queue ● Also similar to Prim’s algorithm for MST ■ Use a priority queue keyed on d[v]

David Luebke 40 9/10/2015 Dijkstra’s Algorithm Dijkstra(G) for each v  V d[v] =  ; d[s] = 0; S =  ; Q = V; while (Q   ) u = ExtractMin(Q); S = S U {u}; for each v  u->Adj[] if (d[v] > d[u]+w(u,v)) d[v] = d[u]+w(u,v); Relaxation Step Note: this is really a call to Q->DecreaseKey() B C DA Ex: run the algorithm

David Luebke 41 9/10/2015 Dijkstra’s Algorithm Dijkstra(G) for each v  V d[v] =  ; d[s] = 0; S =  ; Q = V; while (Q   ) u = ExtractMin(Q); S = S U {u}; for each v  u->Adj[] if (d[v] > d[u]+w(u,v)) d[v] = d[u]+w(u,v); How many times is ExtractMin() called? How many times is DecraseKey() called? What will be the total running time?

David Luebke 42 9/10/2015 Dijkstra’s Algorithm Dijkstra(G) for each v  V d[v] =  ; d[s] = 0; S =  ; Q = V; while (Q   ) u = ExtractMin(Q); S = S U {u}; for each v  u->Adj[] if (d[v] > d[u]+w(u,v)) d[v] = d[u]+w(u,v); How many times is ExtractMin() called? How many times is DecraseKey() called? A: O(E lg V) using binary heap for Q Can acheive O(V lg V + E) with Fibonacci heaps

David Luebke 43 9/10/2015 Dijkstra’s Algorithm Dijkstra(G) for each v  V d[v] =  ; d[s] = 0; S =  ; Q = V; while (Q   ) u = ExtractMin(Q); S = S U {u}; for each v  u->Adj[] if (d[v] > d[u]+w(u,v)) d[v] = d[u]+w(u,v); Correctness: we must show that when u is removed from Q, it has already converged

David Luebke 44 9/10/2015 Correctness Of Dijkstra's Algorithm ● Note that d[v]   (s,v)  v ● Let u be first vertex picked s.t.  shorter path than d[u]  d[u] >  (s,u) ● Let y be first vertex  V-S on actual shortest path from s  u  d[y] =  (s,y) ■ Because d[x] is set correctly for y's predecessor x  S on the shortest path, and ■ When we put x into S, we relaxed (x,y), giving d[y] the correct value s x y u p2p2 p2p2

David Luebke 45 9/10/2015 Correctness Of Dijkstra's Algorithm ● Note that d[v]   (s,v)  v ● Let u be first vertex picked s.t.  shorter path than d[u]  d[u] >  (s,u) ● Let y be first vertex  V-S on actual shortest path from s  u  d[y] =  (s,y) ● d[u]>  (s,u) =  (s,y) +  (y,u) (Why?) = d[y] +  (y,u)  d[y]But if d[u] > d[y], wouldn't have chosen u. Contradiction. s x y u p2p2 p2p2

David Luebke 46 9/10/2015 Disjoint-Set Union Problem ● Want a data structure to support disjoint sets ■ Collection of disjoint sets S = {S i }, S i ∩ S j =  ● Need to support following operations: ■ MakeSet(x): S = S U {{x}} ■ Union(S i, S j ): S = S - {S i, S j } U {S i U S j } ■ FindSet(X): return S i  S such that x  S i ● Before discussing implementation details, we look at example application: MSTs

David Luebke 47 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); }

David Luebke 48 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 49 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 50 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 51 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } ? Run the algorithm:

David Luebke 52 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 53 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } 2? Run the algorithm:

David Luebke 54 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 55 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } ? Run the algorithm:

David Luebke 56 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 57 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } ? 21 Run the algorithm:

David Luebke 58 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 59 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } ? Run the algorithm:

David Luebke 60 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 61 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } ? Run the algorithm:

David Luebke 62 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 63 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } ? 8 21 Run the algorithm:

David Luebke 64 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 65 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } ? Run the algorithm:

David Luebke 66 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } 2 19? Run the algorithm:

David Luebke 67 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } ? Run the algorithm:

David Luebke 68 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } ? Run the algorithm:

David Luebke 69 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 70 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } Run the algorithm:

David Luebke 71 9/10/2015 Correctness Of Kruskal’s Algorithm ● Sketch of a proof that this algorithm produces an MST for T: ■ Assume algorithm is wrong: result is not an MST ■ Then algorithm adds a wrong edge at some point ■ If it adds a wrong edge, there must be a lower weight edge (cut and paste argument) ■ But algorithm chooses lowest weight edge at each step. Contradiction ● Again, important to be comfortable with cut and paste arguments

David Luebke 72 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } What will affect the running time?

David Luebke 73 9/10/2015 Kruskal’s Algorithm Kruskal() { T =  ; for each v  V MakeSet(v); sort E by increasing edge weight w for each (u,v)  E (in sorted order) if FindSet(u)  FindSet(v) T = T U {{u,v}}; Union(FindSet(u), FindSet(v)); } What will affect the running time? 1 Sort O(V) MakeSet() calls O(E) FindSet() calls O(V) Union() calls (Exactly how many Union()s?)

David Luebke 74 9/10/2015 Kruskal’s Algorithm: Running Time ● To summarize: ■ Sort edges: O(E lg E) ■ O(V) MakeSet()’s ■ O(E) FindSet()’s ■ O(V) Union()’s ● Upshot: ■ Best disjoint-set union algorithm makes above 3 operations take O(E  (E,V)),  almost constant ■ Overall thus O(E lg E), almost linear w/o sorting

David Luebke 75 9/10/2015 Disjoint Set Union ● So how do we implement disjoint-set union? ■ Naïve implementation: use a linked list to represent each set: ○ MakeSet(): ??? time ○ FindSet(): ??? time ○ Union(A,B): “copy” elements of A into B: ??? time

David Luebke 76 9/10/2015 Disjoint Set Union ● So how do we implement disjoint-set union? ■ Naïve implementation: use a linked list to represent each set: ○ MakeSet(): O(1) time ○ FindSet(): O(1) time ○ Union(A,B): “copy” elements of A into B: O(A) time ■ How long can a single Union() take? ■ How long will n Union()’s take?

David Luebke 77 9/10/2015 Disjoint Set Union: Analysis ● Worst-case analysis: O(n 2 ) time for n Union’s Union(S 1, S 2 )“copy” 1 element Union(S 2, S 3 )“copy”2 elements … Union(S n-1, S n )“copy”n-1 elements O(n 2 ) ● Improvement: always copy smaller into larger ■ Why will this make things better? ■ What is the worst-case time of Union()? ● But now n Union’s take only O(n lg n) time!

David Luebke 78 9/10/2015 Amortized Analysis of Disjoint Sets ● Amortized analysis computes average times without using probability ● With our new Union(), any individual element is copied at most lg n times when forming the complete set from 1-element sets ■ Worst case: Each time copied, element in smaller set 1st timeresulting set size  2 2nd time  4 … (lg n)th time  n

David Luebke 79 9/10/2015 Amortized Analysis of Disjoint Sets ● Since we have n elements each copied at most lg n times, n Union()’s takes O(n lg n) time ● We say that each Union() takes O(lg n) amortized time ■ Financial term: imagine paying $(lg n) per Union ■ At first we are overpaying; initial Union $O(1) ■ But we accumulate enough $ in bank to pay for later expensive O(n) operation. ■ Important: amount in bank never goes negative

David Luebke 80 9/10/2015 The End