Chapter 6 Energy and Oscillations

Slides:



Advertisements
Similar presentations
AP C UNIT 3 WORK & ENERGY.
Advertisements

Ch 8 Energy Notes ENERGY.
Work Done by a Constant Force
Work, Energy, And Power m Honors Physics Lecture Notes.
Unit 5-2: Energy. Mechanical Energy When mechanical work is done, mechanical energy is put into or taken out of an object. Mechanical energy is a measurement.
Work and Energy Chapter 7.
Chapter 5 Kinetic Energy
Conservation of Energy Introduction Section 0 Lecture 1 Slide 1 Lecture 14 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Physics of Technology—PHYS.
 For circular motion: Centripetal force = gravitational force (F C = F G ) Recap: Orbital Velocity M = planet’s mass m = satellite’s mass r MG v or 
Conservation of Energy
1a. Positive and negative work
Physics 3050 Energy Lecture Slide 1 Energy. Physics 3050 Energy Lecture Slide 2 Work Work = (Force in direction of motion)*distance W, Joule (J) = N-m.
Ch 8 Energy Notes Concept Summary Batesville High School Physics
Work and Energy Definition of Work Kinetic Energy Potential Energy
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Physics 6A Work and Energy examples Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Chapter 4 Work & Energy Dr. Ali.
WORK In order for work to be done, three things are necessary:
SACE Stage 1 Conceptual Physics
Energy Introduction Section 0 Lecture 1 Slide 1 Lecture 13 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Physics of Technology—PHYS 1800 Spring.
Chapter 7 Work and Energy
Work, Power, Energy Work.
by the normal force acting on a sliding block?
College Physics, 7th Edition
Chapter 4 Newton’s Laws: Explaining Motion
Copyright © 2010 Pearson Education, Inc. Chapter 7 Work and Kinetic Energy.
Potential Energy and Conservative Forces
Mechanics Work and Energy Chapter 6 Work  What is “work”?  Work is done when a force moves an object some distance  The force (or a component of the.
Energy m m Physics 2053 Lecture Notes Energy.
Work and Power Chapter 5. Work Work is done when a force causes a displacement in the direction of the force W = Fd (force and displacement parallel)
Chapter 10 & 11 Energy & Work. Energy The capacity of a physical system to perform work. Can be heat, kinetic or mechanical energy, light, potential energy,
Simple Harmonic Motion Chapter 12 Section 1. Periodic Motion A repeated motion is what describes Periodic Motion Examples:  Swinging on a playground.
Work and Energy Chapter 7 Conservation of Energy Energy is a quantity that can be converted from one form to another but cannot be created or destroyed.
Springs We are used to dealing with constant forces. Springs are more complicated - not only does the magnitude of the spring force vary, the direction.
When a weight is added to a spring and stretched, the released spring will follow a back and forth motion.
Chapter 14 VIBRATIONS AND WAVES In this chapter you will:  Examine vibrational motion and learn how it relates to waves.  Determine how waves transfer.
Chapter 6 Work and Energy. Units of Chapter 6 Work Done by a Constant Force Work Done by a Varying Force Kinetic Energy, and the Work-Energy Principle.
Chapter 8 Potential Energy. Potential energy is the energy associated with the configuration of a system of objects that exert forces on each other This.
NAZARIN B. NORDIN What you will learn: Define work, power and energy Potential energy Kinetic energy Work-energy principle Conservation.
Introduction to Simple Harmonic Motion Unit 12, Presentation 1.
Work and Energy.
Energy Lecture Slide 1 Work & Energy. Energy Lecture Slide 2 Work Work = (Force in direction of motion)*distance W, Joule (J) = N-m 1 J is work done in.
Work and Energy x Work and Energy 06.
Lecture 12: Elastic Potential Energy & Energy Conservation.
WORK A force that causes a displacement of an object does work on the object. W = F d Work is done –if the object the work is done on moves due to the.
Alta Conceptual Physics Energy Chapter 8. Alta Conceptual Physics Energy Facts There are different types of energy Energy of all types is measured in.
Chapter-6 Energy and Oscillations. Outline 1 Simple Machines, Work, and Power 2 Kinetic Energy 3 Potential Energy 4 Conservation of Energy 5 Springs and.
Physics - Harmonic Motion We have been dealing with straight line motion or motion that is circular. There are other types of motion that must be dealt.
When a weight is added to a spring and stretched, the released spring will follow a back and forth motion.
Chapter 16 Vibrations Motion. Vibrations/Oscillations Object at the end of a spring Object at the end of a spring Tuning fork Tuning fork Pendulum Pendulum.
Newton’s Law of Universal Gravitation Newton was able to explain Kepler’s 1 st and 3 rd laws by assuming the gravitational force between planets and the.
Energy Notes Energy is one of the most important concepts in science. An object has energy if it can produce a change in itself or in its surroundings.
Any regular vibrations or oscillations that repeat the same movement on either side of the equilibrium position and are a result of a restoring force Simple.
Ch 4 notes. Work Press down on your desk with your hand. Are you doing any work? work – force applied through a distance The transfer of energy when a.
Chapter 6 Energy and Oscillations
Springs And pendula, and energy.
When a weight is added to a spring and stretched, the released spring will follow a back and forth motion.
Dawson High School AP Physics 1
Work & Energy w/o Machines
Work Done by a Constant Force
Work Done by a Constant Force
Exam#1 (chapter 1-6) time: Wed 02/15 8:30am- 9:20am
Simple Harmonic Motion (SHM)
Forms of mechanical energy
Gravitational Potential Energy and Reference level
Chapter 6 Energy and Oscillations
Newton’s Law of Universal Gravitation
Figure 8.1  The work done by an external agent on the system of the book and the Earth as the book is lifted from a height ya to a height yb is equal to.
Simple Harmonic Motion and Wave Interactions
Presentation transcript:

Chapter 6 Energy and Oscillations Lecture PowerPoint Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Energy and Oscillations Why does a swinging pendant return to the same point after each swing?

Energy and Oscillations The force does work to move the ball. This increases the ball’s energy, affecting its motion.

Simple Machines, Work, and Power A simple machine multiplies the effect of an applied force. For example, a lever : A small force applied to one end delivers a large force to the rock. The small force acting through a large distance moves the rock a small distance.

Simple Machines, Work, and Power A simple machine multiplies the effect of an applied force. For example, a pulley : A small tension applied to one end delivers twice as much tension to lift the box. The small tension acting through a large distance moves the box a small distance.

Simple Machines, Work, and Power The mechanical advantage of a simple machine is the ratio of the output force to the input force. For this pulley example, the mechanical advantage is 2.

Work is equal to the force applied times the distance moved. Work = Force x Distance: W = F d Work output = Work input units: 1 Joule (J) = 1 Nm

Only forces parallel to the motion do work. In this case, with the block sliding horizontally, only the 30N part of the diagonal force does work.

Power is the rate of doing work units: 1 watt (W) = 1 J / s Power = Work divided by Time: P = W / t units: 1 watt (W) = 1 J / s

A string is used to pull a wooden block across the floor without accelerating the block. The string makes an angle to the horizontal. Does the force applied via the string do work on the block? Yes, the force F does work. No, the force F does no work. Only part of the force F does work. You can’t tell from this diagram. Only the part of the force that is parallel to the distance moved does work on the block. This is the horizontal part of the force F.

If there is a frictional force opposing the motion of the block, does this frictional force do work on the block? Yes, the frictional force does work. No, the frictional force does no work. Only part of the frictional force does work. You can’t tell from this diagram. Since the frictional force is antiparallel to the distance moved, it does negative work on the block.

Does the normal force of the floor pushing upward on the block do any work? Yes, the normal force does work. No, the normal force does no work. Only part of the normal force does work. You can’t tell from this diagram. Since the normal force is perpendicular to the distance moved, it does no work on the block.

A force of 50 N is used to drag a crate 4 m across a floor A force of 50 N is used to drag a crate 4 m across a floor. The force is directed at an angle upward from the crate as shown. What is the work done by the horizontal component of the force? 120 J 160 J 200 J 280 J 0 J The horizontal component of force is 40 N and is in the direction of motion. W = F · d = (40 N) · (4 m) = 160 J.

What is the work done by the vertical component of the force? 120 J 160 J 200 J 280 J 0 J The vertical component of force is 30 N but isn’t in the direction of motion: W = F · d = (30 N) · (0 m) = 0 J.

What is the total work done by the 50-N force? 120 J 160 J 200 J 280 J 0 J Only the component of force in the direction of motion does work: W = F · d = (40 N) · (4 m) = 160 J.

Kinetic Energy Kinetic energy is the energy associated with an object’s motion. Doing work on an object increases its kinetic energy. Work done = change in kinetic energy

Kinetic Energy Negative work is the work done by a force acting in a direction opposite to the object’s motion. For example, a car skidding to a stop What force is acting to slow the car?

Potential Energy If work is done but no kinetic energy is gained, we say that the potential energy has increased. For example, if a force is applied to lift a crate, the gravitational potential energy of the crate has increased. The work done is equal to the force (mg) times the distance lifted (height). The gravitational potential energy equals mgh.

Work is done on a large crate to tilt the crate so that it is balanced on one edge, rather than sitting squarely on the floor as it was at first. Has the potential energy of the crate increased? Yes No Yes. The center of the crate has been lifted slightly. If it is released it will fall back and convert the potential energy into kinetic energy.

Potential Energy The term potential energy implies storing energy to use later for other purposes. For example, the gravitational potential energy of the crate can be converted to kinetic energy and used for other purposes.

Potential Energy An elastic force is a force that results from stretching or compressing an object. Elastic potential energy is the energy gained when work is done to stretch a spring. The spring constant, k, is a number describing the stiffness of the spring.

Potential Energy The increase in elastic potential energy is equal to the work done by the average force needed to stretch the spring.

Conservative forces are forces for which the energy can be completely recovered. Gravity and elastic forces are conservative. Friction is not conservative.

Conservation of Energy Conservation of energy means the total energy (the kinetic plus potential energies) of a system remain constant. Energy is conserved if there are no non-conservative forces doing work on the system.

A lever is used to lift a rock A lever is used to lift a rock. Will the work done by the person on the lever be greater than, less than, or equal to the work done by the lever on the rock? Greater than Less than Equal to Unable to tell from this diagram The work done by the person can never be less than the work done by the lever on the rock. If there are no dissipative forces they will be equal. This is a consequence of the conservation of energy.

Work done in pulling a sled up a hill produces an increase in potential energy of the sled and rider. This initial energy is converted to kinetic energy as they slide down the hill.

Any work done by frictional forces is negative. That work removes mechanical energy from the system.

A sled and rider with a total mass of 40 kg are perched at the top of the hill shown. Suppose that 2000 J of work is done against friction as the sled travels from the top (at 40 m) to the second hump (at 30 m). Will the sled make it to the top of the second hump if no kinetic energy is given to the sled at the start of its motion? yes no It depends. Yes. The difference between the potential energy at the first point and the second point, plus loss to friction is less than the kinetic energy given at the start of the motion.

Springs and Simple Harmonic Motion Simple harmonic motion occurs when the energy of a system repeatedly changes from potential energy to kinetic energy and back again. Energy added by doing work to stretch the spring is transformed back and forth between potential energy and kinetic energy.

The horizontal position x of the mass on the spring is plotted against time as the mass moves back and forth. The period T is the time taken for one complete cycle. The frequency f is the number of cycles per unit time. The amplitude is the maximum distance from equilibrium.

A restoring force is a force that exerts a push or a pull back towards equilibrium. A restoring force that increases in direct proportion to the distance from equilibrium results in simple harmonic motion.