1 Magnetic fields in star forming regions: theory Daniele Galli INAF-Osservatorio di Arcetri Italy.

Slides:



Advertisements
Similar presentations
Proto-Planetary Disk and Planetary Formation
Advertisements

Methanol maser polarization in W3(OH) Lisa Harvey-Smith Collaborators: Vlemmings, Cohen, Soria-Ruiz Joint Institute for VLBI in Europe.
Fast Magnetic Reconnection B. Pang U. Pen E. Vishniac.
AS 4002 Star Formation & Plasma Astrophysics MOLECULAR CLOUDS Giant molecular clouds – CO emission –several tens of pc across –mass range 10 5 to 3x10.
AS 4002 Star Formation & Plasma Astrophysics BACKGROUND: Maxwell’s Equations (mks) H (the magnetic field) and D (the electric displacement) to eliminate.
Neutron Stars Chandrasekhar limit on white dwarf mass Supernova explosions –Formation of elements (R, S process) –Neutron stars –Pulsars Formation of X-Ray.
Non-ideal MHD and the Formation of Disks Shantanu Basu Western University, London, Ontario, Canada Wolf Dapp ( Juelich Supercomputing Centre, Germany ),
Sternentstehung - Star Formation Sommersemester 2006 Henrik Beuther & Thomas Henning 24.4 Today: Introduction & Overview 1.5 Public Holiday: Tag der Arbeit.
The formation of stars and planets Day 1, Topic 3: Hydrodynamics and Magneto-hydrodynamics Lecture by: C.P. Dullemond.
2. 1 Yes, signal! Physical Properties of diffuse HI gas in the Galaxy from the Arecibo Millennium Survey T. H. Troland Physics & Astronomy Department.
The formation of stars and planets
Global Properties of Molecular Clouds Molecular clouds are some of the most massive objects in the Galaxy. mass: density: > temperature: K ----->
An introduction to the Physics of the Interstellar Medium V. Magnetic field in the ISM Patrick Hennebelle.
Multidimensional Models of Magnetically Regulated Star Formation Shantanu Basu University of Western Ontario Collaborators: Glenn E. Ciolek (RPI), Takahiro.
Magnetically Regulated Star Formation in Turbulent Clouds Zhi-Yun Li (University of Virginia) Fumitaka Nakamura (Niigata University) OUTLINE  Motivations.
Convection in Neutron Stars Department of Physics National Tsing Hua University G.T. Chen 2004/5/20 Convection in the surface layers of neutron stars Juan.
An introduction to the Physics of the Interstellar Medium III. Gravity in the ISM Patrick Hennebelle.
Magnetic fields in Orion’s Veil T. Troland Physics & Astronomy Department University of Kentucky Microstructures in the Interstellar Medium April 22, 2007.
Magnetic Fields: Recent Past and Present Shantanu Basu The University of Western Ontario London, Ontario, Canada DCDLXV, Phil Myers Symposium Thursday,
ISM & Star Formation. The Interstellar Medium HI - atomic hydrogen - 21cm T ~ 0.07K.
Lecture “Planet Formation” Topic: Introduction to hydrodynamics and magnetohydrodynamics Lecture by: C.P. Dullemond.
A Critical Role for Viscosity in the Radio Mode AGN Feedback Cycle Paul Nulsen Harvard-Smithsonian Center for Astrophysics 2014 July 9X-ray View of Galaxy.
The Life Cycle of Giant Molecular Clouds Charlotte Christensen.
The formation of stars and planets
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Chapter 5 Diffusion and resistivity
Nebular Astrophysics.
Overview of equations and assumptions Elena Khomenko, Manuel Collados, Antonio Díaz Departamento de Astrofísica, Universidad de La Laguna and Instituto.
Fate of comets This “Sun-grazing” comet was observed by the SOHO spacecraft a few hours before it passed just 50,000 km above the Sun's surface. The comet.
The Story of Star Birth Shantanu Basu University of Western Ontario CAP Lecture, UWO, April 2, 2003.
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
Lecture 14 Star formation. Insterstellar dust and gas Dust and gas is mostly found in galaxy disks, and blocks optical light.
Star Formation in Molecular Clouds : Observation and Theory Frank H. Shu, Fred C. Adams, Susana Lizano 1987 Simon DeDeo, 20 September 2004 “Greatest Hits”
1 Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México.
AS 4002 Star Formation & Plasma Astrophysics Supercritical clouds Rapid contraction. Fragmentation into subregions –Also supercritical if size R ≥ clump.
Sternentstehung - Star Formation Sommersemester 2006 Henrik Beuther & Thomas Henning 24.4 Today: Introduction & Overview 1.5 Public Holiday: Tag der Arbeit.
Angular momentum conservation: 1
Excesses of Magnetic Flux and Angular Momentum in Stars National Astronomical Observatory (NAOJ) Kohji Tomisaka.
Magnetic activity in protoplanetary discs Mark Wardle Macquarie University Sydney, Australia Catherine Braiding (Macquarie) Arieh Königl (Chicago) BP Pandey.
1 Direct Evidence for Two-Fluid Effects in Molecular Clouds Chad Meyer, Dinshaw Balsara & David Tilley University of Notre Dame.
Partially Ionized Plasma Effect in Dynamic Solar Atmosphere Naoki Nakamura 2015/07/05 Solar Seminar.
THE ROLE OF MAGNETIC FIELDS
1 Non-neutral Plasma Shock HU Xiwei (胡希伟) 工 HU Xiwei (胡希伟) HE Yong (何勇) HE Yong (何勇) Hu Yemin (胡业民) Hu Yemin (胡业民) Huazhong University of Science and.
Magnetic Fields in Molecular Clouds Richard M. Crutcher University of Illinois Collaborators:Tom Troland, University of Kentucky Edith Falgarone, Ecole.
Magnetic Fields: Recent Progress and Future Tests Shantanu Basu The University of Western Ontario EPoS 2008, Ringberg Castle, Germany July 29, 2008.
From Clouds to Cores: Magnetic Field Effects on the Structure of Molecular Gas Shantanu Basu University of Western Ontario, Canada Collaborators: Takahiro.
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
Core Formation due to Magnetic Fields, Ambipolar Diffusion, and Turbulence Shantanu Basu The University of Western Ontario Collaborators: Glenn Ciolek.
Gravitational Collapse and Disk Formation in Magnetized Cores Susana Lizano CRyA, UNAM Transformational Science with ALMA: From Dust to Rocks to Planets,
Maite Beltrán Osservatorio Astrofisico di Arcetri The intringuing hot molecular core G
Fitting Magnetized Molecular Cloud Collapse Models to NGC 1333 IRAS 4A Pau Frau Josep Miquel Girart Daniele Galli Institut de Ciències de l’Espai (IEEC-CSIC)
Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka.
Gestazione e travaglio delle stelle, tra turbolenza e campi magnetici Daniele Galli Osservatorio Astrofisico di Arcetri WIYN Image: T.A. Rector (NOAO/AURA/NSF)
“Ambipolar Diffusion” and Magnetic Reconnection Tsap Yu. T
Studies of Molecular Outflows Hsin-Lun Kuo Department of Physics,NTU Supervisor:Hsien Shang 2002 Summer Students Presentation, ASIAA.
Magnetic Fields and Protostellar Cores Shantanu Basu University of Western Ontario YLU Meeting, La Thuile, Italy, March 24, 2004.
From magnetized cores to protoplanetary disks
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling,
A Survey of the Global Magnetic Fields of Giant Molecular Clouds Giles Novak, Northwestern University Instrument: SPARO Collaborators: P. Calisse, D. Chuss,
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
Magnetic Fields in Star and Planet Formation Frank H. Shu UCSD Physics Department Stars to Planets -- University of Florida 12 April 2007.
A resolution of the magnetic braking catastrophe during the second collapse cc2yso UWO, May 17, 2010 – Wolf Dapp Wolf B. Dapp & Shantanu Basu.
Binary Star Formation and Mass Outflows -MHD Nested Grid Simulation - Masahiro N. Machida ( Hokkaido University / National Astronomical Observatory of.
Toward a New Paradigm of Star Formation: Does Nature Abhor a Singular Isothermal Sphere? Brenda C. Matthews UC Berkeley Radio Astronomy Laboratory.
AS 4002 Star Formation & Plasma Astrophysics Supersonic turbulence? If CO linewidths interpreted as turbulence, velocities approach virial values: Molecular.
Stability of magnetic fields in stars Vienna 11 th September 2007 Jonathan Braithwaite CITA, Toronto.
The University of Western Ontario
Earth’s Ionosphere Lecture 13
Modelling of non-thermal radiation from pulsar wind nebulae
Hideki Maki Department of Physics, Rikkyo University
Presentation transcript:

1 Magnetic fields in star forming regions: theory Daniele Galli INAF-Osservatorio di Arcetri Italy

2 Outline Zeeman effect and polarization Models of magnetized clouds: Magnetic braking Equilibrium Stability Quasistatic evolution Dynamical collapse

3 Pieter Zeeman (1865 – 1943) ApJ, 5, 332 (1897) 2 citations (source: ADS) 1 Nobel prize

4 Basic observational techniques: Zeeman effect and polarization

5 The Zeeman effect in OH toward Orion B Bourke et al. (2001) OH line profile Stokes V spectrum (RCP-LCP)  Zeeman <<  line in molecular clouds

6 Zeeman measurements in molecular clouds (cm -3 )  G) B  1/2 è Crutcher (1999)

7 Summary of Zeeman measurements HI gas molecular clouds OH masers H 2 O masers SiO masers Vallée (1997)

8 Polarization (Weintraub et al. 2000)

9 Polarization map of background starlight in the Milky Way Mathewson & Ford (1970) Taurus Orion Ophiuchus

10 The magnetic field in M51 optical polarization (Scarrott et al. 1987) radio synchrotron polarization (Beck et al. 1987)

11 Optical polarization map of Taurus 5 pc Moneti et al. (1984), Heyer et al. (1987)

12 Weintraub et al. (2000)

13 (Weintraub et al. 2000)

14 Hourglass field geometry in OMC-1? Schleuning (1998)

15 Barnard 1 at 850  m Matthews & Wilson (2002)

16 Submillimiter polarization in cloud cores L183L1544 Ward-Thompson et al. (2000)

17 Models of magnetized clouds: I. Equilibrium

18 force balance no monopoles Poisson’s equation known solutions: axisymmetric: Mouschovias, Nakano, Tomisaka, etc. cylindrical: Chandraskhar & Fermi, etc. helical: Fiege & Pudritz, etc. System of 5 quasi-linear PDEs in 5 unknowns

19 Axially symmetric magnetostatic models Li & Shu (1996), Galli et al. (1999) Shu et al. (2000), Galli et al. (2001) 2-D 3-D

20 line-of-sight

21 Gonçalves, Galli, & Walmsley (2004)

22 Models of magnetized clouds: II. Stability

23 The magnetic virial theorem the magnetic critical mass the critical mass-to-flux ratio Chandrasekhar & Fermi (1953), Mestel & Spitzer (1956), Strittmatter (1966)

24 The role of the magnetic critical mass stable unstable Boyle’s law

25 Cloud supported by thermal pressure: M cr =M J, the Jeans mass Cloud supported by magnetic fields: M cr =M  In general, M cr = M J +M  to within 5% (McKee 1989) For T=10 K, n=10 5 cm -3, R=0.1 pc, B=10  G: M J = M  = 1 M  Summary of stability conditions

26 R RR mass M magnetic flux  m 

27 RR R

28 Bourke et al. (2001)  = 0.1 The magnetic mass-to-flux ratio: observations  = 0.1

29 The magnetic flux problem Molecular clouds:  /M = (  /M) cr Magnetic stars with 1-30 kG fields:  /M = – (  /M) cr Ordinary stars (e.g. the Sun):  /M = (  /M) cr

30 Models of magnetized clouds: II. Quasistatic evolution

31 Ionisation fraction in molecular clouds Bergin et al. (1999)

32 Field-plasma coupling gyration frequency  = qB/mc collision time with neutrals  =1/ n example: n=10 4 cm -3, B=10  G (  electrons =10 7, (  ions =10 3 >>1 magnetic field well coupled to the plasma

33 Effects of the field on the neutrals The field acts on neutrals indirectly only through collisions between neutral and charged particles frictional force on the neutrals: F ni =  in n i n n in (v i -v n ) The field slips through the neutrals at a velocity v drift = v i -v n that depends on the field strength and the ionisation fraction (Mestel & Spitzer 1956)

34 Diffusion of the magnetic field t ad (  ) in  <(  ) in v drift

35 Timescale of magnetic flux loss at n=10 4 cm -3, x e =10 -7, M/  =(M/  ) cr,, L=0.1 pc ambipolar diffusion timescale: Ohmic dissipation timescale: 1-10 Myr yr

36 Density distribution and magnetic fieldlines Desch & Mouschovias (2001) 7.1 Myr Myr Myr Myr

37 Evolution of the central density Desch & Mouschovias (2001) t0t0 t1t1 t2t2

38 The velocity and mass-to-flux radial profiles Desch & Mouschovias (2001) t0t0 t0t0 t2t2 t1t1 t2t2 t1t1 subcritical supercritical supersonic subsonic

39 Core evolution by ambipolar diffusion Fiedler & Mouschovias (1992,1993) R=0.75 pc M=10 M  n= cm -3 v max =0.4 km s -1

40 Models of magnetized clouds: II. Collapse

41 The equations of magnetohydrodynamics equation of continuity equation of momentum induction equation no monopoles Poisson’s equation

42 t = 5.7 x 10 4 yr Galli & Shu (1993) t = 0 Singular isothermal sphere with uniform magnetic field

43 t = 1.1 x 10 5 yr

44 t = 1.7 x 10 5 yr

45 Magnetic reconnection Mestel & Strittmatter (1966)

46 Magnetic braking

47 The angular momentum problem 1M of ISM (n = 1 cm -3,  = rad/s): J/M = cm 2 /s 1M dense core (n = 10 4 cm -3,  =1 km s -1 /pc): J/M = cm 2 /s 1M wide binary (T = 100 yr): J/M = cm 2 /s Solar system: J/M = cm 2 /s   

48 Magnetic Braking Magnetic fields can redistribute angular momentum away from a collapsing region Outgoing torsional Alfvèn waves must couple with mass equal to mass in collapsing region (Mouschovias & Paleologou 1979, 1980) Timescale for magnetic braking: t b  R/(2   v A )  

49 MHD waves transport angular momentum from the core to the envelope magnetic braking timescale shorter than ambipolar diffusion, but longer than free-fall during ambipolar diffusion stage, core corotates with envelope (  const.) in supercritical collapse, specific angular momentum is conserved (J/M=const.)

50 Magnetic braking: observations Ohashi et al. (1997) J/M R  const. J/M  const. Solar system wide binary

51 Conclusions Zeeman effect and polarization Models of magnetized clouds: Magnetic braking Equilibrium Stability Quasistatic evolution Dynamical collapse