Laser driven particle acceleration

Slides:



Advertisements
Similar presentations
Vulcan Front End OPCPA System
Advertisements

Relativistic Surface High Harmonic Generation
Petawatt Field Synthesizer
New hardware and setups New short pulse regime Experimental results TW power Future plans on laser development ATF CO 2 LASER progress Vitaly Yakimenko.
CO 2 laser system M. Polyanskiy, I. Pogorelsky, M. Babzien, and V. Yakimenko.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
L O A Journées accélérateurs, Roscoff, FRANCE, 9-12 (2005) Laser-plasma accelerators: Status and perspectives Victor Malka LOA, ENSTA – CNRS - École Polytechnique,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
C. McGuffey a, W. Schumaker a, S. Kneip b, F. Dollar a, A. Maksimchuk a, A. G. R. Thomas a, and K. Krushelnick a (a) University of Michigan, Center for.
Ultrafast laser-driven electric field propagation on metallic surfaces Laser-driven proton beams When an intense short-pulse laser is focused down onto.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
Capture, focusing and energy selection of laser driven ion beams using conventional beam elements Morteza Aslaninejad Imperial College 13 December 2012.
Perspectives of Plasma-Wakefield Acceleration
kHz-driven high-harmonic generation from overdense plasmas
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
Ultra-High-Intensity Laser-Plasma Interactions: Comparing Experimental Results with Three- Dimensional,Fully-Relativistic, Numerical Simultations Donald.
Lecture 3: Laser Wake Field Acceleration (LWFA)
J. Fils for the PHELIX team GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany Sept Speyer EMMI Workshop The PHELIX High Energy.
Laser plasma researches in Hungary related to the physics of fast ignitors István B Földes, Ervin Rácz KFKI-Research Institute for Particle and Nuclear.
EuroNNAc Workshop, CERN, May 2011 External Injection at INFN-LNF ( integrating RF photo-injectors with LWFA ) Luca Serafini - INFN/Milano High Brightness.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
Bremsstrahlung Temperature Scaling in Ultra-Intense Laser- Plasma Interactions C. Zulick, B. Hou, J. Nees, A. Maksimchuk, A. Thomas, K. Krushelnick Center.
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
Rainer Hörlein 9/12/ ICUIL 2010 Watkins Glen Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation Rainer Hörlein.
Seeking for combined electron/ion spectrometer in laser ion acceleration experiments Outline  Motivation  Look back: laser driven mass-limited droplet.
Swapan Chattopadhyay (CI) Andrei Seryi (JAI) EuCARD, EuroNNAc Workshop, May'11.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
All-optical accelerators
W.S. Graves1 Seeding for Fully Coherent Beams William S. Graves MIT-Bates Presented at MIT x-ray laser user program review July 1, 2003.
Jörn Bödewadt | Seeding at FLASH | | Page 1 Click to edit Master subtitle style Jörn Bödewadt Recent Results of Seeding at FLASH Supported by.
Presented at the 15 th International Symposium on Heavy Ion Driven Inertial Confinement Fusion in Princeton, June 7, 2004 by Matthias Geissel 1,2, Markus.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
P. Muggli, Summary EuroNAAc 11 Disclaimer 1: all slides with nice graphics and useful information shamelessly stolen from original talks Disclaimer 2:
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
ELI Nuclear Physics Workshop Magurele Feb Gérard Mourou
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
SIMULATIONS FOR THE ELUCIDATION OF ELECTRON BEAM PROPERTIES IN LASER-WAKEFIELD ACCELERATION EXPERIMENTS VIA BETATRON AND SYNCHROTRON-LIKE RADIATION P.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Stochastic Wake Field particle acceleration in GRB G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani.
While the rare half of the plasma bubble is accelerating for electrons, the front half of it is decelerating. For positive ions it is just the opposite.
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
Jörn Bödewadt Recent Results of Seeding at FLASH Supported by BMBF under contract 05K13GU4 and 05K13PE3 DFG GrK 1355 Joachim Herz Stiftung Helmholtz Accelererator.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Measurements of High-Field THz Induced Photocurrents in Semiconductors Michael Wiczer University of Illinois – Urbana-Champaign Mentor: Prof. Aaron Lindenberg.
Free Electron Laser driven by Laser Plasma Acceleration FACET-II Science Opportunities Workshop, October 15 th 2015 Jeroen van Tilborg, Carl Schroeder,
BESTIA – the next generation ultra-fast CO 2 laser for advanced accelerator research Igor Pogorelsky Misha Polyanskiy, Marcus Babzien, John Skaritka, Ilan.
Particle and x-ray generation by irradiation of gaseous and solid targets with a 100TW laser pulse Oswald Willi Heinrich-Heine University, Düsseldorf Germany.
Summary WG5 R&D for Innovative Accelerators Greg LeBlanc.
Mirela Cerchez, ILPP, HHU, Düsseldorf Meeting GRK1203, Bad Breisig, 11th October 2007 Absorption of sub-10 fs laser pulses in overdense solid targets Mirela.
M. Amin 1, M. Borghesi 2, C. A. Cecchetti 2, J. Fuchs 3, M. Kalashnikov 4, P. V. Nickles 4, A. Pipahl 1, G. Priebe 5, E. Risse 4, W. Sandner 4,6, M. Schnürer.
Nuova Proposta L3IA Line for Laser Light Ion Acceleration Milano, Pisa, LNS, Bologna, LNF, Napoli.
Study of transient fields with Proton Imaging Toma Toncian Bad Breisig October 2008 GRK1203 TexPoint fonts used in EMF. Read the TexPoint manual before.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
Friedrich-Schiller-University Jena
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
Outline ATF’s Terawatt CO2 laser overview BESTIA concept (as presented at AAC ’14) Progress since AAC ’14 Current vision of the roadmap to 100 TW.
WP13: Access to Plasma Beam testing facilities
SUPA, Department of Physics, University of Strathclyde,
Studies of the energy transfer
Tunable Electron Bunch Train Generation at Tsinghua University
EuPRAXIA working package report
The contribution of the Wigner Research Center to the
All-Optical Injection
Beam loading at a nanocoulomb-class laser wakefield accelerator
Presentation transcript:

Laser driven particle acceleration Oswald Willi Heinrich-Heine Universität, Düsseldorf Germany EuroNNAC workshop 4.Mai 2011

Outline Arcturus Laser Facility Motivation and objectives Applications Possibilities for open access

Present Arcturus Laser System 7 mJ 15 mJ Booster (~104 gain) Grating Stretcher (~ 600 ps) Regenerative Amplifier 5 nJ 25 mJ 5mJ 1 mJ Oscillator (Femto) 80 nm Bandwidth Vac. Compr. 3TW Power Amplifier 2B 100 mJ 1J 500 mJ 150 mJ Power Amplifier 3B (beam 2) Vac. Compr. 200TW 6 J 16J Power Amplifier 1 20 mJ Power Amplifier 2A Power Amplifier 3A (beam 1) Vac. Compr. 100TW 3.2 J 2 J 350 mJ 120 mJ 8J

Present laser specifications Beam 1 100 TW, 25 fs Plasma Mirror Beam 2 200 TW 30 fs Beam 3 3 TW 30 fs All beams optical synchronized Beam 1 Beam 2 Beam 3 Energy before compression 3.2 J 6 J 100 mJ pulse duration is variable >25 fs >30 fs Options adaptive mirror plasma mirror 10Hz 2w

Arbeitsplan für den Projektzeitraum Januar - Dezember 2009 Düsseldorf Arcturus Laser Facility 1 GeV e- 80 MeV p 27 meters

Arbeitsplan für den Projektzeitraum Januar - Dezember 2009 Beamlines and target chambers

Laser specifications at the end of 2011 Beam 1 Beam 2 Beam 3 Energy before compression 6 J 100 mJ pulse duration is variable >25 fs >30 fs Options adaptive mirror plasma mirror 2w Power 200 TW 3 TW XPW system for contrast enhancement Beam 1 100 TW, 25 fs Plasma Mirror Beam 2 200 TW 30 fs Beam 3 3 TW 30 fs All beams optical synchronized

Topics investigated using the Arcturus laser HHG – Behmke et. al., PRL (2011) Proton acceleration dependent on target size – Toncian et al., PoP (2011) Spin polarisation of protons – Büscher et al., SPIN Physics Symposium, (2010) Channel formation – Willi et al. Plasma Phys. Control. Fusion (2009) Absorption measaurements on sturctured tsrgets – Cerchez et al., to be published Electron acceleration

Topics investigated at national and international facilities National collaborations (MBI group in Berlin) Ion acceleration from microspheres: T. Sokollik et al., PRL (2009) - cover page of PRL International collaborations (M. Borghesi (Belfast) and J. Fuchs (LULI)) Laser beam filamentation: G. Sarri et al., PRL (2011) Magnetized soliton remnants: L. Romagnani et al., PRL (2010) Proton production: S. Buffechoux et al., PRL (2010) Laser-driven ultrafast field propagation: K. Quinn et al., PRL (2009) Plasma jets: S. Kar et al., PRL (2008) Observation of collisionless shocks: L. Romagnani et al., PRL (2008) Laser driven micro-lens: T. Toncian et al., Science (2006)

Motivation and goals for electron acceleration In progress Optimization of laser parameters for LWFA (small energy bandwidth, stability, divergence etc.) experimental validation of scaling laws Longer term multi-beam applications: multi-stage acceleration (B. Hidding et al., PRL 104, (2010)) e- beams as seeder for classical accelerators beam driven wakefields with unique features due to short e-bunches Thomson scattering

The bubble regime The Laboratory Pukhov, Meyer-ter-Vehn 2002 Directly accessible for our parameters: The Laboratory Arcturus  Well above bubble threshold! Bubble scaling predictions: Gordienko/Pukhov, PoP 12 (2005) if = 30 TW then

Electron acceleration with Arcturus laser: 1.9J, 40fs Theor. prediction using Pukhov‘s scaling law (Gordienko/Pukhov, PoP (2005)): 375MeV

Simultaneous SPIDER / electron measurements Focus 300µm in front of gas jet entrance Focus directly on gas jet entrance

Gas cell setup

Reproducibility studies using Arcturus Sample shot collection on the gas cell (non consecutive, 50% of shots hit the aperture) 5MeV 30MeV 70MeV 110MeV 86 MeV 110 MeV 250 MeV

Pointing stability and beam divergence

Betatron radiation: Spectral characterisation 18

Betatron radiation: Source size

Applications Generation ultra-short X-ray sources: Thomson scattering Space radiation studies

Thomson scattering Flying mirror on thin foil targets

Space radiation studies Typical e- flux in the van-Allen belt Easily producible thermal spectrum from an LPA (simulation) ESA and university funding – B. Hidding B. Hidding, et al., Deutsche Patentanmeldung 10 2010010716.6 (2010) B. Hidding, et al. NIMPR 636, 31 (2011)

Possibilities for open access As an university we can offer time at the facility at any time Experiments should however be carried out on a collaborative basis 23

Funding and networks Transregional Collaborative Research Centre SFB/TR18 (DFG) (Düsseldorf, Jena, LMU, MPQ and MBI) (It is a 12 year programme which started in 2004 and is assessed after every 4 years) Graduate school GRK1203 (DFG) (Düsseldorf and Jülich) (It is a 9 year programme with one assessment) Graduate school HITEC (HG)