The effects of the Abiotic factors on plant herbivory interactions 3 rd Discussion session Plant-Insect Interaction Course
Herbivory: The consumption of herbaceous vegetationconsumption herbaceousvegetation Herbivores: An animal that feeds chiefly on plants. Herbivorous: Feeding on plants; plant- eating.
.Herbivorous - feeding only on plants Carnivorous - (used of plants as well as animals) feeding on animals; "carnivorous plants are capable of trapping and digesting small animals especially insects“ Insectivorous - (of animals and plants) feeding on insects Omnivorous - feeding on both plants and animals
Plants are static organisms and cannot escape the pressure caused by biotic and abiotic factors. They must increase fitness and prepare adequate responses to external stimuli.
Plants talk, but are they deaf Marcel Dicke et al. Humans often consider plants to be passive organisms, even though individual plants display directed responses to resources such as light and nutrients.
Plants ‘talk’ The emission of volatile chemicals has been referred to as the ability of plants to ‘talk’, that is, to emit information about their state of attack. Rhoades, D.F. (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. In In Plant Resistance to Insects In American Chemical Society Symposium Series 208, Washington, D.C., USA (Hedin, P.A., ed.), pp. 55–68 Baldwin, I.T. and Schultz, J.C. (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221, 277–279
The effects of the Abiotic factors on plant herbivory interactions Abiotic Factors:- Light Temperature, frost/low temperature Water- Water stress, water deficit Nutrients Topography – elevation Relative humidity Pollution salinity, wind
by Sandrine P. Gouinguené and Ted C.J. Turlings Institute of Zoology, Laboratory of Animal Ecology and Entomology, University of Neuchâtel, Case Postale 2, CH– 2007 Neuchâtel, Switzerland Plant Physiol July; 129(3): 1296–1307. The Effects of Abiotic Factors on Induced Volatile Emissions in Corn Plants
Sandrine et al finding Climatic conditions and nutrient availability can be important factors in determining the intensity and variability in the release of induced plant volatiles.
Sandrine et al. Spodoptera littoralis Egyptian Cotton Leafworm The host plant was corn
Soil Humidity Plants released more Volatiles when standing in dry soil than in wet soil, whereas for air humidity, the optimal release was found at around 60% relative humidity Sandrine et al.
Soil Humidity Caterpillar (Spodoptera littoralis) regurgitant was either injected into the stem or applied to the scratched leaves of 10-d-old plants ? Sandrine et al
Soil Humidity
Air Humidity whereas for air humidity, the optimal release was found at around 60% relative humidity Sandrine et al.
Air Humidity Total amount (ng/3 h) of induced volatiles emitted by corn plants under different air humidities. Circles represent the amount released by induced corn plants and squares represent the odor released by undamaged plants. Black curve represents the relation Sandrine et al
Sandrine et al finding Temperatures between 22°C and 27°C led to a higher emission than lower or higher temperatures Light intensity had a dramatic effect. The emission of volatiles did not occur in the dark and increased steadily with an increase in the light intensity. Fertilization also had a strong positive effect; the emission of volatiles was minimal when plants were grown under low nutrition
Temperature Total amount (mean + se) of odor emitted by corn plants under different temperatures (°C). Black bars represent induced plants and white bars represent undamaged plants. Stars indicate significant differences between induced plants and undamaged plants (F = and P < 0.001) and letters above black bars indicate significant differences among the different temperature tested for induced plants by Student-Newman-Keuls post hoc test (α = 0.05). Sandrine et al
Light Intensity Light intensity had a dramatic effect (F = , P < 0.001, and df = 4), with an increase in release of volatiles as light intensity increased. Induced plants in the dark emitted very little odor and their releases were not different from the odor of undamaged plants. No significant effect of the light intensity was found for the releases by undamaged plants (F = 0.755, P = 0.577, and df = 4). Sandrine et al
Light Intensity Total amount (mean + se) of volatiles emitted by corn plants under different light intensities. Black bars represent induced corn plants, and white bars represent undamaged plants. Stars indicate significant differences between the total amount Sandrine et al
Light Cycle Total amount (mean + se) of volatiles emitted by corn plants under dark-light phases. Black bars represent induced corn plants, and white bars represent undamaged plants. The horizontal bar represents the respective dark and light phases. Sandrine et al
Fertilization Rate Sandrine et al
Fertilization Rate Total amount (mean + se) of volatiles emitted by corn plants under three different fertilization rates (see text for details). The graph in A represents the amount without correction for biomass and the graph in B represents the amount corrected for biomass. END Sandrine et al
The magnitude and direction of this effect was different for each factor considered. Higher emission of induced volatiles occurred when the soil was relatively dry, the relative air humidity was between 45% and 65%, the temperature between 22°C and 27°C, with high light intensity, and with continuous fertilization of the soil. In many cases
Light Diurnal emissions have also been reported for induced volatiles. Loughrin et al. (1994) showed that the induced emission of volatiles in cotton (Gossypium hirsutum) plants (Malvaceae) was higher during the afternoon and significantly decreased at night. Loughrin et al. (1994) Similar results were reported by Takabayashi et al. (1994), who found that uninfested leaves of lima bean (Phaseolus lunatus; Fabaceae) placed under high light intensity are more attractive to predatory mites than when they are placed under low light conditions, which was due to different volatiles emission under the two light regimes.Takabayashi et al. (1994) Maeda et al. (2000) reported the importance of light on the emission of induced volatiles in kidney beans (Phaseolus vulgaris) plants attacked by the spider mite (Tetranychus urticae). This corresponded nicely with the responsiveness of predatory mites; they were more active during light periods (Maeda et al., 2000).Maeda et al. (2000)Maeda et al., 2000
Effects of Light on the Tritrophic Interaction Between Kidney Bean Plants, Two-Spotted Spider Mites and Predatory Mites, Amblyseius Womersleyi (Acari: Phytoseiidae) by Taro Maeda et al. The volatiles from Tetranychus urticae- infested kidney bean plants (Phaseolus vulgaris) at different times for two days, they found that they were mainly produced in the light. Tetranychus urticae showed a higher oviposition rate and spent more time feeding during the day (in the light)
Effects of Light on the Tritrophic Interaction Between Kidney Bean Plants, Two-Spotted Spider Mites and Predatory Mites, Amblyseius Womersleyi (Acari: Phytoseiidae) by Taro Maeda et al. Infested leaves placed in the light attracted the predatory mite Amblyseius womersleyi Amblyseius womersleyi dispersed more frequently and consumed more T. urticae eggs during the day (in the light)
water stress Takabayashi et al. (1994) reported that lima beans under water stress were more attractive to spider mites. With chemical analyses, they confirmed that lima bean plants under water stress produce more of the attractive volatiles than non-stressed plants. Their study was done with undamaged plants and they did not report on any effect of water stress on the emission of induced volatilesTakabayashi et al. (1994)
Tetranychus urticae An experiment conducted by Hollingsworth and Berry (1982) revealed that densities of twospotted spider mites, Tetranychus urticae, increased more rapidly on peppermint plants that were under moisture stress than on nonstressed plants
Tetranychus urticae The greatest intensities of mites were observed on plants that had been fertilized with a high ratio of N to P and K. The researchers also reported that the largest populations of spider mites were associated with plants grown at higher air temperatures. This observation supports the earlier hypothesis of Simpson and Connell (1973) that high temperatures may be important for mite population expansion.
Tetranychus urticae moisture stress reduced both soybean plant and total spider mite population growth and apparently also reduced intensity." This pattern is similar to the trend observed with twospotted spider mites on radish plants (Mellors and Propts 1983),
J. A. G OOLSBY et al CONTINENTAL COMPARISONS OF THE INTERACTION BETWEEN CLIMATE AND THE HERBIVOROUS MITE, FLORACARUS PERREPAE (ACARI: ERIOPHYIDAE) J. A. G OOLSBY et al leaf roll galling mite, Floracarus perrepae (ACARI: ERIOPHYIDAE) The Old World climbing fern, Lygodium microphyllum Florida
J. A. G OOLSBY et al
Within sites the mean maximum temperature was the only significant weather variable, showing a decrease in the incidence of leaf rolls above 27°C, and it was predicted that no leaf rolls would form above 35°C.
J. A. G OOLSBY et al
Mattson and Haack (1987) discuss several hypotheses that may explain why drought stress tends to promote outbreak of plant- eating arthropods. They listed the possible outcomes of a drought that could influence insect and plant interactions.
M. GrayM. Gray et al Although mites are not insects, we assume that phytophagous mites respond to drought conditions similarly to plant-eating insects, particularly those that have piercing and sucking mouthparts. 1.Drought provides a more favorable thermal environment for growth of phytophageous insects. 2.Drought-stressed plants are behaviorally more attractive or acceptable for insects. 3.Drought-stressed plants are physiologically more suitable for insects. 4.Drought enhances insect detoxification systems to some plant allelochemicals. 5.Drought may not favor natural enemies of phytophagous insects. 6.Drought may induce genetic changes in insects.
Plant Stress Hypothesis (PSH) The plant stress hypothesis predicts that environmental stresses on plants decrease plant resistance to insect herbivory by altering biochemical source–sink relationships and foliar chemistry, leading to more palatable food. Such changes in the nutritional landscape for insects may facilitate insect population outbreaks during periods of moderate stress on host plants.
Source-sink dynamics is a theoretical model used by ecologists to describe how variation in habitat quality may affect the population growth or decline of organismshabitat populationorganisms
Plant Stress Hypothesis (PSH) Traditionally, herbivorous insects are thought to exhibit enhanced performance and outbreak dynamics on water-stressed host plants due to induced changes in plant physiology. Recent experimental studies, however, provide mixed support for this historical view
Stress Hypotheses Three hypotheses predict how insect herbivores perform on stressed host plants. The plant stress hypothesis (PSH) predicts improved insect performance on stressed hosts. The plant vigour hypothesis (PVH) predicts that insects closely associated with their host, such as gall- formers, will perform better on vigorously growing non- stressed hosts. The Insect Performance Hypothesis (IPH) predicts that wood-feeders, sap-feeders and miners will perform better on stressed hosts, while leaf-feeders and gall- formers will perform better on non-stressed hosts.
Archer et al. (1995) reported that the number of The Russian wheat aphid (RWA's) on wheat plants that are not irrigated was significantly higher than well watered wheat plants.
Water stress Water stress alters the plant and its thermal environment so that plants become more susceptible and suitable for insect growth, survival and reproduction in many insect species, mainly because: (1) plant nutrients are either more concentrated or better balanced; (2) the plant becomes more favorable thermal environment; and (3) the plant has lower defenses (Mattson and Haack, 1987b).
Pollution The effects of environmental change on the insect-plant interaction are currently the subject of much investigation. Increasing atmospheric carbon dioxide concentration, and increasing availability of nitrogen due to depositing of nitrogenous pollutants and increased mineralization rates in warmer climate, both have a potential to alert plant nutritional quality and insect performance
EFFECTS OF HEAVY METAL POLLUTION AND HOST PLANT LEAF CHEMISTRY ON THE IMMUNE DEFENSE AND LIFE HISTORY TRAITS OF AN INSECT HERBIVORE by Tapio van Ooik Turku 2008
Pollution Tapio van Ooik Mountain birch (Betula pubescens. czerepanovii) was the host tree Autumnal moth, Epirrita autumnata family Geometridae Phenoloxidase (PO) activity to gain more information about immune defense in E. autumnata.
Pollution Tapio van Ooik Even the pollution arising from the factory complex at Harjavalta does not seem to affect the moth very much. Pollution decreases the growth of the larvae on Betula pubescens leaves, but the moth seems to be able to offset this by extending the time spent consuming leaves before pupating.
Pollution Tapio van Ooik The moderate amount of pollution at Harjavalta enhances the moth’s immune defense, which may actually benefit the moth: enhanced immune defense helps it to defend itself against parasites and diseases Thus, when pollution increases the immune response in insects, the parasitism rates of insects may decrease in metal-polluted areas. This could lead to another outbreak of the moth
Pollution Tapio van Ooik It is noteworthy that he found sex differences in the immune function of the autumnal moth. Heavy metal pollution decreased PO activity in female moths, but in males the activity increased.
Pollution Tapio van Ooik Additionally, we found clear differences between the sexes in their encapsulation rate. The encapsulation rate of females was higher in the heavy-metal treatment than in the controls, while male immunity showed no effect of treatment
Pollution Tapio van Ooik This supports previous findings showing sex differences in the effect of environmental and genetic factors on immunity in E. autumnata (Rantala and Roff, 2007). We suggest that this is probably a result of sex differences in the genetic architecture of the immune system
Pollution Tapio van Ooik Pollution had also a large effect on the chemistry of mountain birch leaves. E.g., heavy metals had among other things an effect on the amount of phenolic compounds. However, accumulation of phenolics does not necessarily have an adverse effect on the performance of herbivores
Air pollution increases Aphis fabae pest potential G. P. Dohmen, S. McNeill & J. N. B. Bell Nature 307, (05 January 1984);
G. P. Dohmen We show here stimulatory effects of SO2 and NO2 and ambient London air on the growth of the black bean aphid, Aphis fabae, and demonstrate that these have been mediated entirely via the host plant.
Effect of air pollution at a motorway on the infestation of Viburnum opulus by Aphis fabae. The influence of air pollutants from cars on a motorway on the population development of the aphid Aphis fabae on potted Viburnum opulus was investigated in field experiments in Switzerland. After 3 weeks, artificially infested shrubs at the verge of the motorway were 5 times as infested with aphids as those 300 m away from the road. Chambers receiving ambient air had 8 times as many apterous aphids as those receiving filtered air after 4 weeks. Bolsinger, M.Bolsinger, M., Flückiger, W.Flückiger, W.
Chamber experiments at the verge with filtered and unfiltered ambient air showed similar results, Bolsinger, M.Bolsinger, M., Flückiger, W.Flückiger, W.
Many observations have been made of increased population densities of herbivorous insects in areas subject to air pollution