Part of the Local Ecosystems Module Biology in Focus, Preliminary Course Glenda Childrawi and Stephanie Hollis Unit: A Local Ecosystem Topic 2: Biotic.

Slides:



Advertisements
Similar presentations
© SSER Ltd..
Advertisements

Measuring populations. Measuring populations - sampling Usually use transect or quadrat to sample Count number of organisms per sample area, then calculate.
MRS. HAWLEY Ecosystems and Populations.
1.2 Investigating Populations. Learning Objectives Recap yesterday. Elaborate on a few things. Study the different ecological techniques used to study.
Chapter 50: An Introduction to Ecology and the Biosphere
Sampling Techniques To know how to use different sampling techniques Wednesday, May 06, 2015.
SBI4U Population Dynamics
Evolution of Biodiversity
Population Ecology.
Chapter 5 Populations.
Investigating populations
Unit: A Local Ecosystem Topic 4: Populations
Teacher: Mr Fellows Modules: Local Ecosystems (20 hours) Patterns in Nature (40 hours) Life on Earth (30 hours) Evolution of Australian Biota (30 hours)
How would you… Study a single plant Best way? Why? Study a single plant Best way? Why?
Fieldwork. Measuring populations - sampling Usually use transect or quadrat to sample Count number of organisms per sample area, then calculate numbers.
The Biosphere Sub topic (a) Investigating an Ecosystem NameTeacher.
QUIZ IS ON THURSDAY, MAY 7th
Estimating Abundance.
 DIVERSITY  RELATIONSHIP OF DIVERSITY & STABILITY  DIVERSITY INDEX  MICROCLIMATES  USING QUADRANTS.
Population and Communities
What is population? Group of individuals of the same species that live in the same area.
Populations are dynamic. What influences them? How do we measure them? Why is measuring them useful? Why do different organisms have different reproductive.
POPULATION ECOLOGY. ECOLOGY Study of living organisms as groups Interactions between living organisms (predator-prey, parasitism etc) Interactions between.
PA Standards: A – Describe the relationships between the biotic and abiotic components of an ecosystem Describe symbiotic and predator/prey relationships.
Ch.22 Populations and Communities. Section 1: Living Things and the Environment Ecosystem- All the living and nonliving things that interact in an area.
Population and community ecology Population ecology J Gerber and J Goliath 1.
A Local Ecosystem. Abiotic features of the environment Abiotic features are the non-living components of the environment. They include, Physical features:
Sampling techniques and population growth
Part of the Local Ecosystems Module Spotlight Biology Preliminary Text Chapter 3 Authors: D. Heffernan, J. Bastina, B. Grieve, K. Humphreys, A. Sartor.
2.3.2 Abundance of organisms.. Methods for Estimating Population Size 1. Quadrats 2. Capture/Mark/Release/Recapture (Lincoln Index)
Ecology An introduction to the study of the relationships between living things and their environments.
Sampling Techniques To know how to use different sampling techniques.
POPULATION STUDIES. Growth of populations FACTORS INCREASING POPULATION FACTORS DECREASING POPULATION BIRTH IMMIGRATION DEATH EMIGRATION.
What is Population Ecology? 1. Ecology is...  the study of interactions among organisms with each other and with their environment 2.
 3000 Km off the coast of Chile  5 th century – 400 people  Created Moai…had food and war was unknown  Several centuries later…15000!  Not enough.
Ecology Presentation By Ryan, Alex and Chandler. Populations Population: A local group of organisms of one species.
Population Dynamics Population dynamics - the study of the long term changes in population sizes and the factors that cause a change Current focus is.
Population Dynamics Population dynamics is the study of the long term changes in population sizes and the factors that cause a change. The current focus.
© SSER Ltd. How can we investigate populations?. Ecological Techniques A variety of universal practical approaches exist for investigating the biotic.
C. Habitat: An environment that provides an organism with its needs to live, grow and reproduce. One area may contain many habitats Biotic Factors: the.
Identify techniques for estimating various populations (quadrats, transects, mark- recapture) Understand the carrying capacity of ecosystems; factors.
Objective: You will be expected to estimate the size of a sample population using the mark-recapture technique. Be able to apply the technique to new population.
POPULATIONS LESSON 2 - SAMPLING A critical appreciation of some of the ways in which the numbers and distribution of organisms may be investigated. Random.
Chapter 3 Classification of Organisms. ECOSYSTEMS An ecosystem includes biotic and abiotic components interacting together.
Population Ecology 4 CHAPTER
Sampling animals. What do you remember? What is biodiversity? What is species richness? Whose formula can be used to put a figure on the biodiversity.
Module 4 – Biodiversity By Ms Cullen. Terminology Try and define the following terms used when studying the environment.
Levels of Ecological Organization The study of how organisms interact with each other and with their environments Scientists study ecology at various levels.
Some Wildlife Census Techniques
Population and Communities Chapter 9. Studying Populations A population is a group of individuals of the same species, living in a shared space at a specific.
Population Dynamics SOL BIO 9a.
Sampling techniques and the measurement of abiotic and biotic factors
Biodiversity.
A Local Ecosystem.
Population Dynamics Topic 2
C5 Population Ecology National geographic celebrates 7 billionth person on October 31, 2011 Need 1.5 Earths to support current growing population 19th.
The Study of Populations
Chapter 9 p.292 Populations.
Population Dynamics Chapter 6 pp
Studying Populations Key Terms: Population Population Size
Introduction to Ecology
SEPTEMBER 28, 2016 BIOLOGY 10 DM MRS. HAUGHTON
Sampling methods.
Population: A group of individuals… … of the same species…
Population Dynamics SBI4U.
Biotic/Abiotic factors Carrying capacity Techniques of Field Ecology
Required Practical 9: Key term What is a quadrat?
Investigating Populations
Presentation transcript:

Part of the Local Ecosystems Module Biology in Focus, Preliminary Course Glenda Childrawi and Stephanie Hollis Unit: A Local Ecosystem Topic 2: Biotic and Abiotic Features

DOT Point Identify the factors determining the distribution and abundance of a species in each environment.

Introduction Organisms that live in an environment rely on favourable conditions in the area to allow them to successfully live and reproduce. These environmental conditions are called abiotic factors. Abiotic factors are the non-living factors that affect an organism. tutorvista.com

Introduction When a variety of species is present in the ecosystem, the actions of these species can affect the lives of other species in the area; these factors are biotic factors. Biotic factors are the living factors that affect an organism. sciencebitz.com

Abundance and Distribution The distribution of a species describes where it is found and the abundance of a species determines how many members of that species live throughout the ecosystem. Abiotic and biotic factors affect the distribution and abundance of organisms in an ecosystem. nhm.org

Abundance and Distribution In terrestrial environments, abiotic factors such as temperature range, light and water availability most commonly affect a species’ abundance and distribution. blog.nus.edu.sg

Abundance and Distribution In aquatic environments, the importance of each abiotic factor differs between the two main types of environments: 1. freshwater 2. saltwater. Of course, an estuarine environment (one exposed to both freshwater and saltwater) must deal with constant changes in the environment. x.begavalley.nsw.gov.au

Abundance and Distribution Just as important as the abiotic factors are the biotic factors that may influence an organism’s existence in an ecosystem. Even though there is a much greater variation in biotic factors between ecosystems (e.g. availability of worms as a food source for kookaburras in one ecosystem may be much higher than for kookaburras in another), a few key factors will affect organisms within an ecosystem. flickr.com

Abundance and Distribution Examples of biotic factors that may determine the distribution and abundance of a species: availability and abundance of foods number of competitors number of mates number of predators number and variety of disease-causing organisms steveparish.com.au

Abundance and Distribution Generally, in Australia, rainfall, temperature and landform patterns significantly affect the abundance and distribution of vegetation and ecosystems. Most of the rainforest ecosystems are distributed along the east coast of Australia, particularly in the northern regions. cazr.csiro.au

Abundance and Distribution Desert ecosystems, however, are distributed among the central areas of Australia. Abiotic factors such as a high temperature range and low rainfall (arid conditions) create an environment suitable for desert ecosystems. anbg.gov.au

Abundance and Distribution Of course, the distribution and abundance of organisms within these ecosystems may also vary due to biotic factors such as the availability of food, competition within and between species, the availability of mates for reproduction, exposure to predators, and exposure to disease. ferrebeekeeper.wordpress.com

Abundance and Distribution In order to understand and record environmental changes in plant and animal populations over time, population ecologists must collect information on the distribution and abundance of organisms in each ecosystem.

Abundance and Distribution Ecologists also need to determine the distribution of organisms in order to look at any patterns that are formed and the possible reasons for this. This information enables us to determine whether a population is increasing or decreasing in size and what particular aspects of the habitat are favoured over others.

Measuring Distribution Transects are commonly used in large areas to measure the distribution of a species which gives scientists an idea of the variation that may occur in an area. A transect is a narrow strip that crosses the entire area being studied, from one side to the other. asd

Measuring Distribution Transects provide an accurate and easy method of representing an area simply. Two examples of transects are: A plan sketch is an aerial or surface view of a representative area within an ecosystem. It shows to scale the distribution of organisms in a measured and plotted view A profile sketch is a side-on view of an area showing to scale the distribution of organisms along a line asd

Measuring Distribution It is more difficult to assess the distribution of animals due to their daily and seasonal movements. When assessing the animals in an ecosystem we can only observe evidence of their existence in the area.

Measuring Distribution For example, personal sightings, hearing their call, observing their tracks or burrows and traces such as scats (animal faeces) or footprints. Transects can only be used to determine animal distribution for those that hardly move such as barnacles or snails. asd

Measuring Abundance of Plants There are a few different techniques used to estimate abundance in plants. The one that is simple and easy to use in the field is the percentage cover method. This method uses quadrats (1 m × 1 m squares) to cover randomly-selected representative areas for estimating the percentage cover of an area. This method is beneficial when plant species are too high in number to count individually. cnr.uidaho.edu

Measuring Abundance of Plants Percentage cover calculations require: 1. randomly plotting a number of quadrats (e.g. ten) 2. estimating the percentage cover for each one 3. finding an average percentage cover. If the area of the ecosystem is known or estimated, then the percentage cover can then be converted to area. coml.org

Estimating the Abundance of Grass If a school gardener needs to purchase new turf for the football ground, they need to know how much grass cover the football oval has. To find this out they can use the percentage cover method to estimate the grass cover. footybootreviews.blogspot.com

Estimating the Abundance of Grass Lets say we place ten 1m × 1m quadrats randomly on the Western Field and the grass cover was drawn to scale and plotted for each one like in the diagrams. Estimates of percentage cover were made for each of the ten quadrat drawings. asd

Estimating the Abundance of Grass

If the area of the oval is measured at 250 m ² then the estimated area of grass cover is: 54% × 250 m ² = 135 m ². The gardener can now safely assume they need to purchase 115 m ² (250 m ² –135 m ² ) of turf to fill the bare areas. They can then repeat the same process the following year to determine if the turf replacement has successfully changed the percentage grass cover of the football oval. asd

Measuring the Abundance of Animals Obviously, it is a little more difficult to calculate the abundance of animals than plants, and attempting to count every animal species in an area is sometimes very difficult. trekearth.com

Measuring the Abundance of Animals Estimating abundance is a much easier way of finding out roughly how many animal species exist in an area. Ecologists use a sampling technique called the mark– release– recapture technique: 1. Animals are captured, 2. the sample animals are tagged then released, 3. these animals are given time to mix again, recaptured and the number tagged in the sample are counted. otago.ac.nz

Measuring the Abundance of Animals helpinghandmoldavia.nl

Measuring the Abundance of Animals Example of the mark–release– recapture technique: 1. Capture a random sample of animals from the population is selected: Twenty small birds (Superb Blue Wren) were captured, using bird nets alibaba.com

Measuring the Abundance of Animals 2. Mark and release marked animals from the first capture are released back into the natural population and left for a period of time to mix with unmarked individuals The 20 birds are tagged with leg bands and released back into their area and left for three weeks to mix with the population flickr.com

Measuring the Abundance of Animals 3. Recapture a sample is captured again to look at the proportion of animals marked from the previous sample After three weeks a second sample of ten birds is captured to find four marked birds from the first capture framework.latimes.com

Measuring the Abundance of Animals asd

Measuring the Abundance of Animals The mark–release–recapture technique is based on a number of assumptions for accurate estimates of the total population to be calculated: 1. There is no population change through migration, births or deaths between the sampling periods 2. All animals are equally able to be caught (individuals are not ‘trap happy’ or ‘trap shy’) 3. Marked animals are not hampered in their ability to move and mix freely with the rest of the population. asd

Measuring the Abundance of Animals Capturing animals requires various trapping techniques, all designed so that animals are unhurt (e.g. traps, nets and small pits). Some techniques avoid the need for recapturing the animals such as radio-tracking and the use of electronic detection devices. dailytelegraph.com.au

Measuring the Abundance of Animals Conservationist Steve ‘The Crocodile Hunter’ Irwin, in his last television project Ocean’s Deadliest, demonstrates the use of satellite-tracking devices for crocodiles. He is seen having to subdue a giant crocodile in order to attach the device; however, the crocodile remains unharmed. dailytelegraph.com.au

Activity -Nil