Super Grain Corp. Advertising-Mix Problem (Section 3.1) 3.2–3.5

Slides:



Advertisements
Similar presentations
Computational Methods for Management and Economics Carla Gomes Module 2 (addendum) Revisiting the Divisibility Assumption (Textbook – Hillier and Lieberman)
Advertisements

Thank you and welcome Linear Programming (LP) Modeling Application in manufacturing And marketing By M. Dadfar, PhD.
Chapter 3: Linear Programming Modeling Applications © 2007 Pearson Education.
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Table of Contents Chapter 4 (Linear Programming: Formulation and Applications) Super Grain.
Introduction to Mathematical Programming
Linear Programming We are to learn two topics today: LP formulation
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Table of Contents Chapter 2 (Linear Programming: Basic Concepts) Three Classic Applications.
Introduction to Management Science
Operations Management Linear Programming Module B - Part 2
Super Grain Corp. Advertising-Mix Problem (Section 3.1) 3.2–3.5
Chapter 3.
Marketing Applications: Media selection
Linear Programming Using the Excel Solver
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., The Transportation Problem A common problem in logistics is how to transport goods from.
Managerial Decision Modeling with Spreadsheets
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Linear Programming Applications in Marketing, Finance and Operations
19 Linear Programming CHAPTER
2-1 Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions.
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Integer Programming.
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Three Classic Applications of LP Product Mix at Ponderosa Industrial –Considered limited.
Computational Methods for Management and Economics Carla Gomes Module 5 Modeling Issues.
QM B Linear Programming
Linear Programming (6S) and Transportation Problem (8S)
Computational Methods for Management and Economics Carla Gomes
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Table of Contents Chapter 4 (Linear Programming: Formulation and Applications) Taking stock.
Linear Programming (LP)
1 Lecture 2 MGMT 650 Linear Programming Applications Chapter 4.
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Table of Contents Chapter 2 (Linear Programming: Basic Concepts) The Wyndor Glass Company.
INTRODUCTION TO LINEAR PROGRAMMING
Chapter 10. Resource Allocation
 Marketing Application  Media Selection  Financial Application  Portfolio Selection  Financial Planning  Product Management Application  Product.
McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved. 1.
Introduction to Mathematical Programming OR/MA 504 Chapter 5 Integer Linear Programming.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
Introduction to Linear Programming
Explorations in Artificial Intelligence Prof. Carla P. Gomes Module 6 Intro to Linear Programming.
Table of Contents Chapter 2 (Linear Programming: Basic Concepts)
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Table of Contents Chapter 3 (Linear Programming: Formulation and Applications) Super Grain.
Chapter 19 Linear Programming McGraw-Hill/Irwin
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Table of Contents Chapter 4 (Linear Programming: Formulation and Applications) Super Grain.
BA 452 Lesson A.8 Marketing and Finance Applications 1 1ReadingsReadings Chapter 4 Linear Programming Applications in Marketing, Finance, and Operations.
Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., Chapter 6 Transportation and Assignment Problems.
McGraw-Hill/Irwin Modified for Quan 6610 by Dr. Jim Grayson Optimization© The McGraw-Hill Companies, Inc., Chapter 4 (Linear Programming: Formulation.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Linear Programming: Basic Concepts
MIN:50x1 + 83x x3 + 61y1 + 97y y3 Demand Constraints x 1 + y 1 = 3,000} model 1 x 2 + y 2 = 2,000} model 2 x 3 + y 3 = 900} model 3 Resource.
Production Management Application by Aparna Asha. v Saritha Jinto Antony Kurian.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Spreadsheet Modeling & Decision Analysis:
Spreadsheet Modeling and Decision Analysis, 3e, by Cliff Ragsdale. © 2001 South-Western/Thomson Learning. 6-1 Integer Linear Programming Chapter 6.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Linear Programming: Formulation and Applications Chapter 3: Hillier and Hillier.
Linear Programming Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
1 Linear Programming (LP) 線性規劃 - George Dantzig, 1947.
Table of Contents CD Chapter 17 (Goal Programming)
Chapter # 19: Sales Mix Considerations Margin of Safety Operating Leverage Cost-Volume-Profit Analysis Business Applications of CVP Additional Considerations.
LP Formulation Set 2. 2 Ardavan Asef-Vaziri June-2013LP-Formulation Problem (From Hillier and Hillier) Strawberry shake production Several ingredients.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Supplement 6 Linear Programming.
Integer Programming Definition of Integer Programming If requiring integer values is the only way in which a problem deviates from.
1 Ardavan Asef-Vaziri June-2013LP-Formulation Additional Problems.
Linear Programming Department of Business Administration FALL by Asst. Prof. Sami Fethi.
Chapter 3 Linear Programming Applications
 Marketing Application  Media Selection  Financial Application  Portfolio Selection  Financial Planning  Product Management Application  Product.
EMGT 5412 Operations Management Science Linear Programming: Spreadsheet Modeling, Applications, and Sensitivity Analysis Dincer Konur Engineering Management.
Topics in Computational Sustainability Optimization: Intro to Linear programming.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
1 Introduction To Linear Programming l Today many of the resources needed as inputs to operations are in limited supply. l Operations managers must understand.
Chapter 3 Introduction to Linear Programming to accompany Operations Research: Applications and Algorithms 4th edition by Wayne L. Winston Copyright (c)
Table of Contents Chapter 2 (Linear Programming: Basic Concepts) The Wyndor Glass Company Product Mix Problem (Section 2.1)2.2 Formulating the Wyndor Problem.
Presentation transcript:

Table of Contents Chapter 3 (Linear Programming: Formulation and Applications) Super Grain Corp. Advertising-Mix Problem (Section 3.1) 3.2–3.5 Resource Allocation Problems (Section 3.2) 3.6–3.16 Cost-Benefit-Trade-Off Problems (Section 3.3) 3.17–3.22 Mixed Problems (Section 3.4) 3.23–3.28 Transportation Problems (Section 3.5) 3.29–3.33 Assignment Problems (Section 3.6) 3.34–3.37 McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.

Super Grain Corp. Advertising-Mix Problem Goal: Design the promotional campaign for Crunchy Start. The three most effective advertising media for this product are Television commercials on Saturday morning programs for children. Advertisements in food and family-oriented magazines. Advertisements in Sunday supplements of major newspapers. The limited resources in the problem are Advertising budget ($4 million). Planning budget ($1 million). TV commercial spots available (5). The objective will be measured in terms of the expected number of exposures. Question: At what level should they advertise Crunchy Start in each of the three media? 3-2

Cost and Exposure Data Costs Cost Category Each TV Commercial Each Magazine Ad Each Sunday Ad Ad Budget $300,000 $150,000 $100,000 Planning budget 90,000 30,000 40,000 Expected number of exposures 1,300,000 600,000 500,000 Table 3.1 Cost and exposure data for the Super Grain advertising-mix problem 3-3

Spreadsheet Formulation Figure 3.1 The spreadsheet model for the Super Grain problem (Section 3.1), including the target cell Total Exposures (H13), the changing cells Number of Ads (C13:E13), and the optimal solution obtained by Solver. 3-4

Algebraic Formulation Let TV = Number of commercials for separate spots on television M = Number of advertisements in magazines. SS = Number of advertisements in Sunday supplements. Maximize Exposure = 1,300TV + 600M + 500SS subject to Ad Spending: 300TV + 150M + 100SS ≤ 4,000 ($thousand) Planning Cost: 90TV + 30M + 30SS ≤ 1,000 ($thousand) Number of TV Spots: TV ≤ 5 and TV ≥ 0, M ≥ 0, SS ≥ 0. 3-5

The TBA Airlines Problem TBA Airlines is a small regional company that specializes in short flights in small airplanes. The company has been doing well and has decided to expand its operations. The basic issue facing management is whether to purchase more small airplanes to add some new short flights, or start moving into the national market by purchasing some large airplanes, or both. Question: How many airplanes of each type should be purchased to maximize their total net annual profit? 3-6

Data for the TBA Airlines Problem Small Airplane Large Airplane Capital Available Net annual profit per airplane $7 million $22 million Purchase cost per airplane 25 million 75 million $250 million Maximum purchase quantity 5 — Table 3.2 Data for the TBA Airlines problem. 3-7

Violates Divisibility Assumption of LP Divisibility Assumption of Linear Programming: Decision variables in a linear programming model are allowed to have any values, including fractional values, that satisfy the functional and nonnegativity constraints. Thus, these variables are not restricted to just integer values. Since the number of airplanes purchased by TBA must have an integer value, the divisibility assumption is violated. 3-8

Spreadsheet Model Figure 3.2 A spreadsheet model for the TBA Airlines integer programming problem where the changing cells, Units Produced (C12:D12), show the optimal airplane purchases obtained by the Solver and the target cell, Total Profit (G12), gives the resulting total profit in millions of dollars. 3-9

Integer Programming Formulation Let S = Number of small airplanes to purchase L = Number of large airplanes to purchase Maximize Profit = 7S + 22L ($millions) subject to Capital Available: 25S + 75L ≤ 250 ($millions) Max Small Planes: S ≤ 5 and S ≥ 0, L ≥ 0 S, L are integers. 3-10

Think-Big Capital Budgeting Problem Think-Big Development Co. is a major investor in commercial real-estate development projects. They are considering three large construction projects Construct a high-rise office building. Construct a hotel. Construct a shopping center. Each project requires each partner to make four investments: a down payment now, and additional capital after one, two, and three years. Question: At what fraction should Think-Big invest in each of the three projects? 3-11

Financial Data for the Projects Investment Capital Requirements Year Office Building Hotel Shopping Center $40 million $80 million $90 million 1 60 million 80 million 50 million 2 90 million 20 million 3 10 million 70 million Net present value $45 million $70 million $50 million Table 3.3 Financial data for the projects being considered for partial investment by the Think-Big Development Co. 3-12

Spreadsheet Formulation Figure 3.3 The spreadsheet model for the Think-Big problem (Section 3.2), including the target cell Total NPV (H16), the changing cells Participation Share (C16:E16), and the optimal solution obtained by Solver. 3-13

Algebraic Formulation Let OB = Participation share in the office building, H = Participation share in the hotel, SC = Participation share in the shopping center. Maximize NPV = 45OB + 70H + 50SC subject to Total invested now: 40OB + 80H + 90SC ≤ 25 ($million) Total invested within 1 year: 100OB + 160H + 140SC ≤ 45 ($million) Total invested within 2 years: 190OB + 240H + 160SC ≤ 65 ($million) Total invested within 3 years: 200OB + 310H + 220SC ≤ 80 ($million) and OB ≥ 0, H ≥ 0, SC ≥ 0. 3-14

Template for Resource-Allocation Problems Figure 3.4 A template of a spreadsheet model for pure resource-allocation problems. 3-15

Summary of Formulation Procedure for Resource-Allocation Problems Identify the activities for the problem at hand. Identify an appropriate overall measure of performance (commonly profit). For each activity, estimate the contribution per unit of the activity to the overall measure of performance. Identify the resources that must be allocated. For each resource, identify the amount available and then the amount used per unit of each activity. Enter the data in steps 3 and 5 into data cells. Designate changing cells for displaying the decisions. In the row for each resource, use SUMPRODUCT to calculate the total amount used. Enter <= and the amount available in two adjacent cells. Designate a target cell. Use SUMPRODUCT to calculate this measure of performance. 3-16

Union Airways Personnel Scheduling Union Airways is adding more flights to and from its hub airport and so needs to hire additional customer service agents. The five authorized eight-hour shifts are Shift 1: 6:00 AM to 2:00 PM Shift 2: 8:00 AM to 4:00 PM Shift 3: Noon to 8:00 PM Shift 4: 4:00 PM to midnight Shift 5: 10:00 PM to 6:00 AM Question: How many agents should be assigned to each shift? 3-17

Time Periods Covered by Shift Minimum Number of Agents Needed Schedule Data Time Periods Covered by Shift Time Period 1 2 3 4 5 Minimum Number of Agents Needed 6 AM to 8 AM √ 48 8 AM to 10 AM 79 10 AM to noon 65 Noon to 2 PM 87 2 PM to 4 PM 64 4 PM to 6 PM 73 6 PM to 8 PM 82 8 PM to 10 PM 43 10 PM to midnight 52 Midnight to 6 AM 15 Daily cost per agent $170 $160 $175 $180 $195 Table 3.5 Data for the Union Airways personnel scheduling problem 3-18

Spreadsheet Formulation Figure 3.5 The spreadsheet model for the Union Airways problem, including the target cell Total Cost (J21), the changing cells Number Working (C21:G21), and the optimal solution as obtained by the Solver. 3-19

Algebraic Formulation Let Si = Number working shift i (for i = 1 to 5), Minimize Cost = $170S1 + $160S2 + $175S3 + $180S4 + $195S5 subject to Total agents 6AM–8AM: S1 ≥ 48 Total agents 8AM–10AM: S1 + S2 ≥ 79 Total agents 10AM–12PM: S1 + S2 ≥ 65 Total agents 12PM–2PM: S1 + S2 + S3 ≥ 87 Total agents 2PM–4PM: S2 + S3 ≥ 64 Total agents 4PM–6PM: S3 + S4 ≥ 73 Total agents 6PM–8PM: S3 + S4 ≥ 82 Total agents 8PM–10PM: S4 ≥ 43 Total agents 10PM–12AM: S4 + S5 ≥ 52 Total agents 12AM–6AM: S5 ≥ 15 and Si ≥ 0 (for i = 1 to 5) 3-20

Template for Cost-Benefit Tradoff Problems Figure 3.6 A template of a spreadsheet model for pure cost-benefit-trade-off problems. 3-21

Summary of Formulation Procedure for Cost-Benefit-Tradeoff Problems Identify the activities for the problem at hand. Identify an appropriate overall measure of performance (commonly cost). For each activity, estimate the contribution per unit of the activity to the overall measure of performance. Identify the benefits that must be achieved. For each benefit, identify the minimum acceptable level and then the contribution of each activity to that benefit. Enter the data in steps 3 and 5 into data cells. Designate changing cells for displaying the decisions. In the row for each benefit, use SUMPRODUCT to calculate the level achieved. Enter >= and the minimum acceptable level in two adjacent cells. Designate a target cell. Use SUMPRODUCT to calculate this measure of performance. 3-22

Types of Functional Constraints Form* Typical Interpretation Main Usage Resource constraint LHS ≤ RHS For some resource, Amount used ≤ Amount available Resource-allocation problems and mixed problems Benefit constraint LHS ≥ RHS For some benefit, Level achieved ≥ Minimum Acceptable Cost-benefit-trade-off problems and mixed problems Fixed-requirement constraint LHS = RHS For some quantity, Amount provided = Required amount Transportation problems and mixed problems * LHS = Left-hand side (a SUMPRODUCT function). RHS = Right-hand side (a constant). Table 3.6 Types of Functional Constraints 3-23

Continuing the Super Grain Case Study David and Claire conclude that the spreadsheet model needs to be expanded to incorporate some additional considerations. In particular, they feel that two audiences should be targeted — young children and parents of young children. Two new goals The advertising should be seen by at least five million young children. The advertising should be seen by at least five million parents of young children. Furthermore, exactly $1,490,000 should be allocated for cents-off coupons. 3-24

Benefit and Fixed-Requirement Data Number Reached in Target Category (millions) Each TV Commercial Each Magazine Ad Each Sunday Ad Minimum Acceptable Level Young children 1.2 0.1 5 Parents of young children 0.5 0.2 Contribution Toward Required Amount Required Amount Coupon redemption $40,000 $120,000 $1,490,000 Table 3.7 and Table 3.8 The benefit data and fixed-requirement data for the Revised Super Grain Corp. Advertising Mix Problem. 3-25

Spreadsheet Formulation Figure 3.7 The spreadsheet model for the revised Super Grain problem (Section 3.4), including the target cell Total Exposures (H19), the changing cells Number of Ads (C19:E19), and the optimal solution obtained by the Solver. 3-26

Algebraic Formulation Let TV = Number of commercials for separate spots on television M = Number of advertisements in magazines. SS = Number of advertisements in Sunday supplements. Maximize Exposure = 1,300TV + 600M + 500SS subject to Ad Spending: 300TV + 150M + 100SS ≤ 4,000 ($thousand) Planning Cost: 90TV + 30M + 30SS ≤ 1,000 ($thousand) Number of TV Spots: TV ≤ 5 Young children: 1.2TV + 0.1M ≥ 5 (millions) Parents: 0.5TV + 0.2M + 0.2SS ≥ 5 (millions) Coupons: 40M + 120SS = 1,490 ($thousand) and TV ≥ 0, M ≥ 0, SS ≥ 0. 3-27

Template for Mixed Problems Figure 3.8 A template of a spreadsheet model for pure cost-benefit-trade-off problems. 3-28

The Big M Transportation Problem The Big M Company produces a variety of heavy duty machinery at two factories. One of its products is a large turret lathe. Orders have been received from three customers for the turret lathe. Question: How many lathes should be shipped from each factory to each customer? 3-29

Shipping Cost for Each Lathe Some Data Shipping Cost for Each Lathe To Customer 1 Customer 2 Customer 3 From Output Factory 1 $700 $900 $800 12 lathes Factory 2 800 900 700 15 lathes Order Size 10 lathes 8 lathes 9 lathes Table 3.9 Some data for the Big M Company transportation problem 3-30

The Distribution Network Figure 3.9 The distribution network for the Big M Company problem. 3-31

Spreadsheet Formulation Figure 3.10 The spreadsheet model for the Big M Company problem, including the target cell Total Cost (H15), the changing cells Units Shipped (C11:E12), and the optimal solution obtained by the Solver. 3-32

Algebraic Formulation Let Sij = Number of lathes to ship from i to j (i = F1, F2; j = C1, C2, C3). Minimize Cost = $700SF1-C1 + $900SF1-C2 + $800SF1-C3 + $800SF2-C1 + $900SF2-C2 + $700SF2-C3 subject to Factory 1: SF1-C1 + SF1-C2 + SF1-C3 = 12 Factory 2: SF2-C1 + SF2-C2 + SF2-C3 = 15 Customer 1: SF1-C1 + SF2-C1 = 10 Customer 2: SF1-C2 + SF2-C2 = 8 Customer 3: SF1-C3 + SF2-C3 = 9 and Sij ≥ 0 (i = F1, F2; j = C1, C2, C3). 3-33

Sellmore Company Assignment Problem The marketing manager of Sellmore Company will be holding the company’s annual sales conference soon. He is hiring four temporary employees: Ann Ian Joan Sean Each will handle one of the following four tasks: Word processing of written presentations Computer graphics for both oral and written presentations Preparation of conference packets, including copying and organizing materials Handling of advance and on-site registration for the conference Question: Which person should be assigned to which task? 3-34

Data for the Sellmore Problem Required Time per Task (Hours) Temporary Employee Word Processing Graphics Packets Registrations Hourly Wage Ann 35 41 27 40 $14 Ian 47 45 32 51 12 Joan 39 56 36 43 13 Sean 25 46 15 Table 3.10 Data for the Sellmore Company problem. 3-35

Spreadsheet Formulation Figure 3.11 A spreadsheet formulation of the Sellmore Co. problem as an assignment problem, including the target cell Total Cost (J30). The values of 1 in the changing cells Assignment (D24:G27) show the optimal plan obtained by the Solver for assigning the people to the tasks. 3-36

The Model for Assignment Problems Given a set of tasks to be performed and a set of assignees who are available to perform these tasks, the problem is to determine which assignee should be assigned to each task. To fit the model for an assignment problem, the following assumptions need to be satisfied: The number of assignees and the number of tasks are the same. Each assignee is to be assigned to exactly one task. Each task is to be performed by exactly one assignee. There is a cost associated with each combination of an assignee performing a task. The objective is to determine how all the assignments should be made to minimize the total cost. 3-37