Linear Algebra Lecture 25.

Slides:



Advertisements
Similar presentations
5.4 Basis And Dimension.
Advertisements

5.2 Rank of a Matrix. Set-up Recall block multiplication:
Gauss Elimination.
Section 4.6 (Rank).
4 4.3 © 2012 Pearson Education, Inc. Vector Spaces LINEARLY INDEPENDENT SETS; BASES.
Eigenvalues and Eigenvectors
THE DIMENSION OF A VECTOR SPACE
Matrices and Systems of Equations
4 4.6 © 2012 Pearson Education, Inc. Vector Spaces RANK.
Lecture 10 Dimensions, Independence, Basis and Complete Solution of Linear Systems Shang-Hua Teng.
Subspaces, Basis, Dimension, Rank
1 MAC 2103 Module 10 lnner Product Spaces I. 2 Rev.F09 Learning Objectives Upon completing this module, you should be able to: 1. Define and find the.
Copyright © 2011 Pearson, Inc. 7.3 Multivariate Linear Systems and Row Operations.
1 MAC 2103 Module 9 General Vector Spaces II. 2 Rev.F09 Learning Objectives Upon completing this module, you should be able to: 1. Find the coordinate.
Chapter 2 Simultaneous Linear Equations (cont.)
4 4.2 © 2012 Pearson Education, Inc. Vector Spaces NULL SPACES, COLUMN SPACES, AND LINEAR TRANSFORMATIONS.
4 4.4 © 2012 Pearson Education, Inc. Vector Spaces COORDINATE SYSTEMS.
Vectors in R n a sequence of n real number An ordered n-tuple: the set of all ordered n-tuple  n-space: R n Notes: (1) An n-tuple can be viewed.
Section 4.1 Vectors in ℝ n. ℝ n Vectors Vector addition Scalar multiplication.
A matrix equation has the same solution set as the vector equation which has the same solution set as the linear system whose augmented matrix is Therefore:
We will use Gauss-Jordan elimination to determine the solution set of this linear system.
Orthogonality and Least Squares
Elementary Linear Algebra Anton & Rorres, 9th Edition
5.5 Row Space, Column Space, and Nullspace
4 4.6 © 2012 Pearson Education, Inc. Vector Spaces RANK.
4.6: Rank. Definition: Let A be an mxn matrix. Then each row of A has n entries and can therefore be associated with a vector in The set of all linear.
Section 2.3 Properties of Solution Sets
Vector Spaces RANK © 2016 Pearson Education, Inc..
4.8 Rank Rank enables one to relate matrices to vectors, and vice versa. Definition Let A be an m  n matrix. The rows of A may be viewed as row vectors.
A website that has programs that will do most operations in this course (an online calculator for matrices)
4 © 2012 Pearson Education, Inc. Vector Spaces 4.4 COORDINATE SYSTEMS.
2 2.9 © 2016 Pearson Education, Inc. Matrix Algebra DIMENSION AND RANK.
Elementary Linear Algebra Anton & Rorres, 9 th Edition Lecture Set – 07 Chapter 7: Eigenvalues, Eigenvectors.
4.3 Linearly Independent Sets; Bases
Arab Open University Faculty of Computer Studies M132: Linear Algebra
Elementary Linear Algebra Anton & Rorres, 9th Edition
4.8 Rank Rank enables one to relate matrices to vectors, and vice versa. Definition Let A be an m  n matrix. The rows of A may be viewed as row vectors.
5 5.1 © 2016 Pearson Education, Ltd. Eigenvalues and Eigenvectors EIGENVECTORS AND EIGENVALUES.
4.5: The Dimension of a Vector Space. Theorem 9 If a vector space V has a basis, then any set in V containing more than n vectors must be linearly dependent.
4 4.5 © 2016 Pearson Education, Inc. Vector Spaces THE DIMENSION OF A VECTOR SPACE.
4 4.2 © 2016 Pearson Education, Inc. Vector Spaces NULL SPACES, COLUMN SPACES, AND LINEAR TRANSFORMATIONS.
4 Vector Spaces 4.1 Vector Spaces and Subspaces 4.2 Null Spaces, Column Spaces, and Linear Transformations 4.3 Linearly Independent Sets; Bases 4.4 Coordinate.
Chapter 5 Chapter Content 1. Real Vector Spaces 2. Subspaces 3. Linear Independence 4. Basis and Dimension 5. Row Space, Column Space, and Nullspace 6.
Matrices, Vectors, Determinants.
 Matrix Operations  Inverse of a Matrix  Characteristics of Invertible Matrices …
Section 5.6 Rank and Nullity. FOUR FUNDAMENTAL MATRIX SPACES If we consider matrices A and A T together, then there are six vector spaces of interest:
REVIEW Linear Combinations Given vectors and given scalars
7.3 Linear Systems of Equations. Gauss Elimination
Linear Equations in Linear Algebra
Elementary Linear Algebra Anton & Rorres, 9th Edition
Eigenvalues and Eigenvectors
Row Space, Column Space, and Nullspace
Linear Algebra Lecture 22.
Linear Equations in Linear Algebra
4.6: Rank.
Linear Algebra Lecture 37.
What can we know from RREF?
Linear Algebra Lecture 21.
Elementary Linear Algebra Anton & Rorres, 9th Edition
Mathematics for Signals and Systems
Linear Algebra Lecture 24.
Maths for Signals and Systems Linear Algebra in Engineering Lectures 4-5, Tuesday 18th October 2016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN.
Elementary Linear Algebra Anton & Rorres, 9th Edition
Linear Algebra Lecture 6.
Row-equivalences again
Vector Spaces RANK © 2012 Pearson Education, Inc..
THE DIMENSION OF A VECTOR SPACE
Null Spaces, Column Spaces, and Linear Transformations
NULL SPACES, COLUMN SPACES, AND LINEAR TRANSFORMATIONS
Eigenvalues and Eigenvectors
Presentation transcript:

Linear Algebra Lecture 25

Vector Spaces

Rank

The Row Space If A is an m x n matrix, each row of A has n entries and thus can be identified with a vector in Rn. The set of all linear combinations of the row vectors is called the row space of A and is denoted by Row A. …

continued Each row has n entries, so Row A is a subspace of Rn. Since the rows of A are identified with the columns of AT, we could also write Col AT in place of Row A.

The row space of A is the subspace of R5 spanned by {r1, r2, r3, r4 }. Example 1 The row space of A is the subspace of R5 spanned by {r1, r2, r3, r4 }.

Theorem If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as B.

If A and B are row equivalent matrices, then (a) A given set of column Theorem If A and B are row equivalent matrices, then (a) A given set of column vectors of A is linearly independent if and only if the corresponding column vectors of B are linearly independent.

(b) A given set of column vector of A forms a basis for continued (b) A given set of column vector of A forms a basis for the column space of A if and only if the corresponding column vector of B forms a basis for the column space of B.

Find the bases for the row and column spaces of Example 2 Find the bases for the row and column spaces of

Solution Since elementary row operations do not change the row space of a matrix, we can find a basis for the row space of A by finding a basis for the row space of any row-echelon form of A.

Now using the theorem (1) the non-zero vectors of R form a basis for the row space of R, and hence form bases for the row space of A. these bases vectors are

Keeping in mind that A and R may have different column spaces, we cannot find a basis for the column space of A directly from the column vectors of R. however, it follows from the theorem (2b) if we can find a set of column vectors of R that forms a basis for the column space of R, then the corresponding column vectors of A will form a basis for the column space of A.

The first, third, and fifth columns of R contains the leading 1’s of the row vectors, so form a basis for the column space of R, thus the corresponding column vectors of A

form a basis for the column space of A.

Find bases for the space spanned by the vectors Example 3 Find bases for the space spanned by the vectors

Solution Except for a variation in notation, the space spanned by these vectors is the row space of the matrix

Transforming Matrix to Row Echelon Form:

Therefore,

The non-zero row vectors in this matrix are These vectors form a basis for the row space and consequently form a basis for the subspace of R5 spanned by v1, v2, v3.

Example 4 Find a basis for the row space of A consisting entirely of row vectors from A, where

Solution We will transpose A, thereby, converting the row space of A into the column space of AT; then we will use the method of example (2) to find a basis for the column space of AT; and then we will transpose again to convert column vectors back to row vectors. Transposing A yields

Transforming Matrix to Row Echelon Form:

The first, second and fourth columns contain the leading 1’s, so the corresponding column vectors in AT form a basis for the column space of AT; these are

Transposing again and adjusting the notation appropriately yields the basis vectors for the row space of A.

The main result of this lecture involves the three spaces: Row A, Col A, and Nul A. The following example prepares the way for this result and shows how one sequence of row operations on A leads to bases for all three spaces.

Example 5 Find bases for the row space, the column space and the null space of the matrix

Definition The rank of A is the dimension of the column space of A. Since Row A is the same as Col AT, the dimension of the row space of A is the rank of AT. The dimension of the null space is sometimes called the nullity of A.

The Rank Theorem

The Rank Theorem The dimensions of the column space and the row space of an m x n matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation rank A + dim Nul A = n

Examples

If A is an m x n, matrix, then Theorem If A is an m x n, matrix, then (a) rank (A) = the number of leading variables in the solution of Ax = 0 (b) nullity (A) = the number of parameters in the general solution of Ax = 0

nullity (A)=n-rank (A)=7-3=4 There are four parameters. Example 11 Find the number of parameters in the solution set of Ax = 0 if A is a 5 x 7 matrix of rank 3. nullity (A)=n-rank (A)=7-3=4 There are four parameters.

Theorem If A is any matrix, then rank (A) = rank (AT)

Four Fundamental Matrix Spaces Row space of A Column space of A Null space of A Null space of AT

Suppose that A is an m x n matrix of rank r, AT is an n x m matrix of rank r . Fundamental space Dimension Row space of A r Column space of A r Null space of A n-r Null space of AT m-r

Example 12 If A is a 7 x 4 matrix, then the rank of A is at most 4 and, consequently, the seven row vectors must be linearly dependent. …

continued If A is a 4 x 7 matrix, then again the rank of A is at most 4 and, consequently, the seven column vectors must be linearly dependent.

Invertible Matrix Theorem

Invertible Matrix Theorem Let A be an n x n matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix. …

The columns of A form a basis of Rn. Col A = Rn dim Col A = n rank A = n Nul A = {0} dim Nul A = 0

The matrices below are row equivalent Example 13 The matrices below are row equivalent

1. Find rank A and dim Nul A. 2. Find bases for Col A and Row A. 3. What is the next step to perform if one wants to find a basis for Nul A? 4. How many pivot columns are in a row echelon form of AT?

Linear Algebra Lecture 25